【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,已知直線
上兩點(diǎn)
的極坐標(biāo)分別為
,圓
的參數(shù)方程為
(
為參數(shù)).
(1)設(shè)
為線段
的中點(diǎn),求直線
的平面直角坐標(biāo)方程;
(2)判斷直線
與圓
的位置關(guān)系.
【答案】(Ⅰ)
(Ⅱ) 直線
和圓
相交
【解析】試題分析:(1)設(shè)
為線段
的中點(diǎn),求直線
的平面直角坐標(biāo)方程;(2)求出圓的圓心與半徑,判斷圓心與直線的距離與半徑的關(guān)系,即可判斷直線
與圓
的位置關(guān)系.
試題解析:解:(1)由題意知,
的平面直角坐標(biāo)分別為
,
又
為線段
的中點(diǎn),從而點(diǎn)
的平面直角坐標(biāo)為
,故直線
的平面直角坐標(biāo)方程為
.
(2)因?yàn)橹本
上兩點(diǎn)
的平面直角坐標(biāo)分別為
,所以直線
的平面直角坐標(biāo)方程為
,又圓
的圓心坐標(biāo)為
,半徑
,圓心到直線
的距離
,故直線
與圓
相交.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“拋階磚”是國外游樂場的典型游戲之一.參與者只需將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲,但很少有人得到獎(jiǎng)品,請用所學(xué)的概率知識(shí)解釋這是為什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)![]()
(Ⅰ)求不等式
的解集;
(Ⅱ)已知函數(shù)
的最小值為
,若實(shí)數(shù)
且
,求
的
最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個(gè)數(shù)字被污損.
![]()
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識(shí)的的時(shí)間y (單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如下表所示):
![]()
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程
,并預(yù)測年齡為60歲觀眾周均學(xué)習(xí)成語知識(shí)的時(shí)間.
參考數(shù)據(jù):線性回歸方程中
的最小二乘估計(jì)分別是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106].已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( )
A. 90 B. 75
C. 60 D. 45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
經(jīng)過伸縮變換
后得到曲線
.在以原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)說明曲線
是哪一種曲線,并將曲線
的方程化為極坐標(biāo)方程;
(2)已知點(diǎn)
是曲線
上的任意一點(diǎn),求點(diǎn)
到直線
的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點(diǎn),點(diǎn)
在線段
上.
![]()
(1)求證:
平面
;
(2)如果直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有一個(gè)正方形網(wǎng)格,其中每個(gè)最小正方形的邊長都為5 cm.現(xiàn)用直徑為2 cm的硬幣投擲到此網(wǎng)格上,求硬幣落下后與格線有公共點(diǎn)的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com