設(shè)
是同時符合以下性質(zhì)的函數(shù)
組成的集合:
①
,都有
;②
在
上是減函數(shù).
(1)判斷函數(shù)
和
(
)是否屬于集合
,并簡要說明理由;
(2)把(1)中你認為是集合
中的一個函數(shù)記為
,若不等式
對任意的
總成立,求實數(shù)
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
恒過定點 (3,2).
(1)求實數(shù)
;
(2)在(1)的條件下,將函數(shù)
的圖象向下平移1個單位,再向左平移
個單位后得到函數(shù)
,設(shè)函數(shù)
的反函數(shù)為
,求
的解析式;
(3)對于定義在[1,9]的函數(shù)
,若在其定義域內(nèi),不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
)的圖象如圖所示.![]()
(1) 求函數(shù)
的解析式;
(2) 設(shè)函數(shù)
,且
,求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
對任意
滿足
,
,若當(dāng)
時,
(
且
),且
.
(1)求實數(shù)
的值;
(2)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
.
(Ⅰ)若
,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若
恒成立,求
的取值范圍. (注:
是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)若
的定義域和值域均是
,求實數(shù)
的值;
(2)若對任意的
,![]()
,總有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)
,若在定義域內(nèi)存在實數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù)
,試判斷
是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若
是定義在區(qū)間
上的“局部奇函數(shù)”,求實數(shù)
的取值范圍;
(Ⅲ)若
為定義域
上的“局部奇函數(shù)”,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com