【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調(diào)查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調(diào)查結果如表:
古文迷 | 非古文迷 | 合計 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有
的把握認為“古文迷”與性別有關?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調(diào)查,記這3人中“古文迷”的人數(shù)為
,求隨機變量
的分布列與數(shù)學期望.
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
【答案】(I)沒有
的把握認為“古文迷”與性別有關;(II)“古文迷”的人數(shù)為3,“非古文迷”有2;(III)分布列見解析,期望為
.
【解析】試題分析:
試題解析:
試分析:(1)由列聯(lián)表,求得
的值,即可作出結論;
(2)調(diào)查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分層抽樣的方法即可抽得結果.
(3)由
為所抽取的3人中“古文迷”的人數(shù),的
的所有取值為1,2,3,進而得到取每個值的概率,列出分布列,求解數(shù)學期望.
試題解析:(I)由列聯(lián)表得![]()
所以沒有
的把握認為“古文迷”與性別有關.
(II)調(diào)查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分層抽樣的方法抽出5人,則“古文迷”的人數(shù)為
人,“非古文迷”有
人.
即抽取的5人中“古文迷”和“非古文迷”的人數(shù)分別為3人和2人
(III)因為
為所抽取的3人中“古文迷”的人數(shù),所以
的所有取值為1,2,3.
,
,
.
所以隨機變量
的分布列為
| 1 | 2 | 3 |
|
|
|
|
于是
.
科目:高中數(shù)學 來源: 題型:
【題目】設a是實數(shù),f(x)=a﹣
(x∈R).
(1)證明不論a為何實數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關于x的不等式f(x+1)+f(1﹣2x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.
(1)到第幾年末總利潤最大,最大值是多少?
(2)到第幾年末年平均利潤最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某舉重運動隊為了解隊員的體重分布情況,從50名隊員中抽取10名作調(diào)查.抽取時現(xiàn)將全體隊員隨機按1~50編號,并按編號順序平均分成10組,每組抽一名,且各組內(nèi)抽取的編號依次增加5進行系統(tǒng)抽樣.
![]()
(1)若第5組抽出的號碼為22,寫出所有被抽取出來的編號;
(2)分別統(tǒng)計被抽取的10名隊員的體重(單位:公斤),獲得如圖所示的體重數(shù)據(jù)的莖葉圖,根據(jù)莖葉圖求該樣本的平均數(shù)和中位數(shù);
(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊員中隨機抽取2名隊員的體重數(shù)據(jù),求體重為81公斤的隊員被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅰ)根據(jù)題目完成
列聯(lián)表,并據(jù)此判斷是否有
的把握認為環(huán)保知識成績優(yōu)秀與學生的文理分類有關.
(Ⅱ)現(xiàn)已知
,
,
三人獲得優(yōu)秀的概率分別為
,
,
,設隨機變量
表示
,
,
三人中獲得優(yōu)秀的人數(shù),求
的分布列及期望
.
附:
, ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,已知曲線
(
為參數(shù)),在以原點
為極點,
軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為:
.
(Ⅰ)求曲線
的普通方程和直線的直角坐標方程;
(Ⅱ)過點
且與直線平行的直線
交
于
,
兩點,求點
到
,
兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
.
(1)若直線
是函數(shù)
圖象的一條切線,求實數(shù)
的值;
(2)若函數(shù)
在
上的最大值為
(
為自然對數(shù)的底數(shù)),求實數(shù)
的值;
(3)若關于
的方程
有且僅有唯一的實數(shù)根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形
中,
,
為邊
的中點,將
沿直線
翻轉成
.若
為線段
的中點,則在
翻折過程中:
![]()
①
是定值;②點
在某個球面上運動;
③存在某個位置,使
;④存在某個位置,使
平面
.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的兩個焦點分別為
,短軸的兩個端點分別為
.
(Ⅰ)若
為等邊三角形,求橢圓
的方程;
(Ⅱ)若橢圓
的短軸長為
,過點
的直線
與橢圓
相交于
兩點,且
,求直線
的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com