【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+
)=4
.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值.
【答案】
(1)解:由
得cosα=
,sinα=y.∴曲線C1的普通方程是
.
∵
,∴ρsinθ+ρcosθ=8.即x+y﹣8=0.∴曲線C2的直角坐標(biāo)方程時x+y﹣8=0.
(2)解:設(shè)P點坐標(biāo)(
,sinα),∴P到直線C2的距離d=
=
,
∴當(dāng)sin(α+
)=1時,d取得最小值
=3 ![]()
【解析】(1)利用cos2α+sin2α=1消參數(shù)得到C1的普通方程,將極坐標(biāo)方程左側(cè)展開即可得到直角坐標(biāo)方程;(2)利用C1的參數(shù)方程求出P到C2的距離,根據(jù)三角函數(shù)的性質(zhì)求出距離的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
為偶函數(shù),且當(dāng)
時,
.記
.給出下列關(guān)于函數(shù)
的說法:①當(dāng)
時,
;②函數(shù)
為奇函數(shù);③函數(shù)
在
上為增函數(shù);④函數(shù)
的最小值為
,無最大值. 其中正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是等比數(shù)列,公比為q(q>0且q≠1),4a1 , 3a2 , 2a3成等差數(shù)列,且它的前4項和為S4=15.
(1)求{an}通項公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓E:
+
=1(a>b>0)的焦點到直線x﹣3y=0的距離為
,離心率為
,拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合;斜率為k的直線l過G的焦點與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學(xué)常數(shù)λ,使
為常數(shù),若存在,求λ的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為矩形,平面
平面
,
,
,
,
為
中點.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在點
,使得
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進行社會實踐,對
歲的人群隨機抽取 1000 人進行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在
歲,
歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的
、
.
(1)求
歲與
歲年齡段“時尚族”的人數(shù);
(2)從
歲和
歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時尚達人大賽,其中兩人作為領(lǐng)隊.求領(lǐng)隊的兩人年齡都在
歲內(nèi)的概率。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
的左、右焦點為
,右頂點為
,上頂點為
,若
,
與
軸垂直,且
.
(1)求橢圓方程;
(2)過點
且不垂直于坐標(biāo)軸的直線與橢圓交于
兩點,已知點
,當(dāng)
時,求滿足
的直線
的斜率
的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com