欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.設(shè)A、B分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點,點P在C上且異于A、B兩點,若直線AP與BP的斜率之積為-$\frac{1}{3}$,則C的離心率為$\frac{{\sqrt{6}}}{3}$.

分析 由題意可得A(-a,0),B(a,0),設(shè)P(x0,y0),由題意可得ab的關(guān)系式,結(jié)合橢圓系數(shù)的關(guān)系和離心率的定義可得.

解答 解:由題意可得A(-a,0),B(a,0),設(shè)P(x0,y0),
則由P在橢圓上可得$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{^{2}}$=1,∴y02=$\frac{{a}^{2}-{{x}_{0}}^{2}}{{a}^{2}}$•b2,①
∵直線AP與BP的斜率之積為-$\frac{1}{3}$,
∴$\frac{{y}_{0}}{{x}_{0}+a}$•$\frac{{y}_{0}}{{x}_{0}-a}$=-$\frac{1}{3}$,∴$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}$=-$\frac{1}{3}$,②
把①代入②化簡可得$\frac{^{2}}{{a}^{2}}$=$\frac{1}{3}$,即$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}$=$\frac{1}{3}$,
∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{2}{3}$,∴離心率e=$\frac{c}{a}$=$\sqrt{\frac{2}{3}}$=$\frac{\sqrt{6}}{3}$
故答案為:$\frac{\sqrt{6}}{3}$

點評 本題考查橢圓的簡單性質(zhì),涉及橢圓的離心率和直線的斜率公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某商場以每件30元的價格購進(jìn)一種玩具.通過試銷售發(fā)現(xiàn),逐漸提高售價,每天的利潤增大,當(dāng)售價提高到45元時,每天的利潤達(dá)到最大值為450元,再提高售價時,由于銷售量逐漸減少利潤下降,當(dāng)售價提高到60元時,每天一件也賣不出去.設(shè)售價為x,利潤y是x的二次函數(shù),則這個二次函數(shù)的解析式是( 。
A.y=-2(x-30)(x-60)B.y=-2(x-30)(x-45)C.y=(x-45)2+450D.y=-2(x-30)2+450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=sinx+cosx,x∈R,則有下列結(jié)論:①此函數(shù)的圖象關(guān)于直線x=-$\frac{π}{4}$對稱;②此函數(shù)的最大值為$\sqrt{2}$;③此函數(shù)在區(qū)間(-$\frac{π}{4}$,$\frac{π}{4}$)上是增函數(shù);④若角A是△ABC中的最小內(nèi)角,則f(A)的值域為$(1,\sqrt{2}]$.則其中為真命題的序號為②③④.(填上你認(rèn)為是真命題的所有序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得K2≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05.
對此,四名同學(xué)做出了以下的判斷:
p:有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
q:若某人未使用該血清,那么他在一年中有95%的可能性得感冒
r:這種血清預(yù)防感冒的有效率為95%
s:這種血清預(yù)防感冒的有效率為5%
則上述結(jié)論中,正確結(jié)論的序號是p,r..(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個焦點為F1,F(xiàn)2,點P在橢圓C上,且PF2⊥F1F2,|PF1|=$\frac{14}{3}$,|PF2|=$\frac{4}{3}$.
(1)求橢圓C的方程;
(2)若直線l過圓x2+y2+4x-2y=0的圓心M交橢圓于A,B兩點,且A,B關(guān)于點M對稱,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則B∩∁NA=( 。
A.{6,12}B.{3,9}C.{0,3,9}D.{0,6,12}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知y=21+ax在R上是減函數(shù),則a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ex-mx+1(x≥0)的圖象為曲線C,若曲線C存在與直線y=ex垂直的切線,則實數(shù)m的取值范圍為($\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.命題p:實數(shù)x滿足x2-4ax+3a2<0(其中a>0),命題q:2<x≤3
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若q是p的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案