【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在(195,210]內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖
圖1:乙流水線樣本頻率分布直方圖
![]()
表1:甲流水線樣本頻數(shù)分布表
質(zhì)量指標值 | 頻數(shù) |
(190,195] | 9 |
(195,200] | 10 |
(200,205] | 17 |
(205,210] | 8 |
(210,215] | 6 |
(1)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標值的中位數(shù)和平均數(shù)(估算平均數(shù)時,同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出的不合格品約多少件?
【答案】(1)中位數(shù)
,平均數(shù)204.5 (2)1500,1000
【解析】
(1)根據(jù)中位數(shù)定義列式求解,再根據(jù)組中值求平均數(shù);
(2)先根據(jù)古典概型概率分別求甲、乙不合格品概率,再根據(jù)概率估計不合格品件數(shù).
解:(1)設(shè)乙流水線生產(chǎn)產(chǎn)品的該項質(zhì)量指標值的中位數(shù)為x,
因為0.48=(0.012+0.032+0.052)×5<0.5<(0.012+0.032+0.052+0.076)×5=0.86,
則(0.012+0.032+0.052)×5+0.076×(x-205)=0.5,解得x=
.
平均數(shù)估計為:0.012×5×192.5+0.032×5×197.5+0.052×5×202.5+0.076×5×207.5+0.028×5×212.5=204.5
(2)由甲、乙兩條流水線各抽取的50件產(chǎn)品可得,甲流水線生產(chǎn)的不合格品有15件,
則甲流水線生產(chǎn)的產(chǎn)品為不合格品的概率為 P甲=
=
,
乙流水線生產(chǎn)的產(chǎn)品為不合格品的概率為 P乙=(0.012+0.028)×5=
,
于是,若某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩條流水線生產(chǎn)的不合格品件數(shù)分別約為:5000×
=1500,5000×
=1000.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
(
)的離心率為
,且經(jīng)過點
.
(1)求橢圓
的方程;
(2)過點
作直線
與橢圓
交于不同的兩點
,
,試問在
軸上是否存在定點
使得直線
與直線
恰關(guān)于
軸對稱?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)動點
,
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
,
是函數(shù)
(其中常數(shù)
)圖象上的兩個動點,點
,若
的最小值為0,則函數(shù)
的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
在橢圓
上,
為坐標原點,直線
的斜率與直線
的斜率乘積為
.
(1)求橢圓
的方程;
(2)不經(jīng)過點
的直線
(
且
)與橢圓
交于
,
兩點,
關(guān)于原點的對稱點為
(與點
不重合),直線
,
與
軸分別交于兩點
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右兩個頂點分別為
、
,曲線
是以
、
兩點為頂點,焦距為
的雙曲線,設(shè)點
在第一象限且在曲線
上,直線
與橢圓相交于另一點
.
(1)求曲線
的方程;
(2)設(shè)
、
兩點的橫坐標分別為
、
,求證
為一定值;
(3)設(shè)△
與△
(其中
為坐標原點)的面積分別為
與
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有
人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取
人調(diào)查專項附加扣除的享受情況.
(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為
.享受情況如右表,其中“
”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機抽取2人接受采訪.
員工 項目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)
為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件
發(fā)生的概率.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com