欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)函數(shù)f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求實(shí)數(shù)a的值及f(x)的最大值;
(Ⅱ)求實(shí)數(shù)a的值,使得函數(shù)f(x)同時(shí)具備如下的兩個(gè)性質(zhì):
①對于任意實(shí)數(shù)x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②對于任意實(shí)數(shù)x1,x2∈(1,+∞)且x1≠x2,
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.
(Ⅰ)函數(shù)f(x)的定義域是(0,+∞),f′(x)=
1
x
+2ax-(3a+1)
,
依題意,f'(1)=1+2a-(3a+1)=0,解得a=0.   
此時(shí),f(x)=lnx-x+1,f′(x)=
1
x
-1=
1-x
x

因?yàn)閤∈(0,+∞),令f'(x)>0,可得x∈(0,1);令f'(x)<0,可得x∈(1,+∞).
所以,函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減. 
因此,當(dāng)x=1時(shí),f(x)取得最大值f(1)=0.    
(Ⅱ)令F(x1,x2)=
f(x1)+f(x2)
2
-f(
x1+x2
2
)

=
1
2
(lnx1+lnx2)-ln(
x1+x2
2
)+
a
2
(
x21
+
x22
)-a(
x1+x2
2
)2
=
a
4
(x1-x2)2-
1
2
ln(
(x1+x2)2
4x1x2
)
,
由(Ⅰ)中的結(jié)論可知,lnx-x+1<0對任意x∈(0,1)∪(1,+∞)恒成立,即lnx<x-1(*)恒成立.                    
(ⅰ)如果x1,x2∈(0,1),且x1≠x2,則
(x1+x2)2
4x1x2
=1+
(x1-x2)2
4x1x2
>1

根據(jù)(*)可得ln(
(x1+x2)2
4x1x2
)<
(x1-x2)2
4x1x2
,F(x1x2)>
a
4
(x1-x2)2-
1
2
(x1-x2)2
4x1x2

若f(x)滿足性質(zhì)①,則
a
4
(x1-x2)2-
1
2
(x1-x2)2
4x1x2
<F(x1x2)<0
恒成立,
于是
a
4
1
8x1x2
對任意x1,x2∈(0,1)且x1≠x2恒成立,所以a≤
1
2

(ⅱ)如果x1,x2∈(1,+∞)且x1≠x2,則0<
4x1x2
(x1+x2)2
=1-
(x1-x2)2
(x1+x2)2
<1

根據(jù)(*)可得ln(
4x1x2
(x1+x2)2
)<-
(x1-x2)2
(x1+x2)2
?ln(
(x1+x2)2
4x1x2
)>
(x1-x2)2
(x1+x2)2
,
則F(x1,x2)<
a
4
(x1-x2)2-
1
2
(x1-x2)2
(x1+x2)2
.若f(x)滿足性質(zhì)②,則
a
4
(x1-x2)2-
1
2
(x1-x2)2
(x1+x2)2
>F(x1,x2)>0
恒成立.
于是
a
4
1
2(x1+x2)2
對任意x1,x2∈(1,+∞)且x1≠x2恒成立,所以a
1
2

綜合(。áⅲ┛傻茫琣=
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊答案