【題目】已知數(shù)列
的首項(xiàng)
,對任意的
,都有
,數(shù)列
是公比不為
的等比數(shù)列.
(1)求實(shí)數(shù)
的值;
(2)設(shè)
數(shù)列
的前
項(xiàng)和為
,求所有正整數(shù)
的值,使得
恰好為數(shù)列
中的項(xiàng).
【答案】(1)
;(2)
.
【解析】
(1)根據(jù)遞推公式求出
、
,由題意得出
,求出
的值,結(jié)合數(shù)列
公比不為
的等比數(shù)列進(jìn)行檢驗(yàn),進(jìn)而得出實(shí)數(shù)
的值;
(2)求出
利用奇偶分組法求出
、
,設(shè)
,可得知
,從而可知
、
或
為偶數(shù),由
結(jié)合
可推出
不成立,然后分
和
為偶數(shù)兩種情況討論,結(jié)合
的取值范圍可求出符合條件的正整數(shù)
的值.
(1)由
,
可知,
,
,
因?yàn)?/span>
為等比數(shù)列,所以
,
即
,即
,解得
或
,
當(dāng)
時,
,所以
,則
,
所以數(shù)列
的公比為1,不符合題意;
當(dāng)
時,
,所以數(shù)列
的公比
,
所以實(shí)數(shù)
的值為
.
(2)由(1)知
,所以![]()
則![]()
![]()
,
則
,
因?yàn)?/span>
,又
,
且
,
,所以
,則
,設(shè)
,
則
或
為偶數(shù),因?yàn)?/span>
不可能,所以
或
為偶數(shù),
①當(dāng)
時,
,化簡得
,
即
,所以
可取值為1,2,3,
驗(yàn)證
,
,
得,當(dāng)
時,
成立.
②當(dāng)
為偶數(shù)時,
,
設(shè)
,則
,
由①知
,當(dāng)
時,
;
當(dāng)
時,
,所以
,所以
的最小值為
,
所以
,令
,則
,
即
,無整數(shù)解.
綜上,正整數(shù)
的值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將所有平面向量組成的集合記作
,
是從
到
的對應(yīng)關(guān)系,記作
或
,其中
、
、
、
都是實(shí)數(shù),定義對應(yīng)關(guān)系
的模為:在
的條件下
的最大值記作
,若存在非零向量
,及實(shí)數(shù)
使得
,則稱
為
的一個特殊值;
(1)若
,求
;
(2)如果
,計(jì)算
的特征值,并求相應(yīng)的
;
(3)若
,要使
有唯一的特征值,實(shí)數(shù)
、
、
、
應(yīng)滿足什么條件?試找出一個對應(yīng)關(guān)系
,同時滿足以下兩個條件:①有唯一的特征值
,②
,并驗(yàn)證
滿足這兩個條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日我國隆重紀(jì)念了建國70周年,期間進(jìn)行了一系列大型慶祝活動,極大地激發(fā)了全國人民的愛國熱情.某校高三學(xué)生也投入到了這場愛國活動中,他(她)們利用周日休息時間到社區(qū)做義務(wù)宣講員,學(xué)校為了調(diào)查高三男生和女生周日的活動時間情況,隨機(jī)抽取了高三男生和女生各40人,對他(她)們的周日活動時間進(jìn)行了統(tǒng)計(jì),分別得到了高三男生的活動時間(單位:小時)的頻數(shù)分布表和女生的活動時間(單位:小時)的頻率分布直方圖.(活動時間均在
內(nèi))
活動時間 |
|
|
|
|
|
|
頻數(shù) | 8 | 10 | 7 | 9 | 4 | 2 |
![]()
(1)根據(jù)調(diào)查,試判斷該校高三年級學(xué)生周日活動時間較長的是男生還是女生?并說明理由;
(2)在被抽取的80名高三學(xué)生中,從周日活動時間在
內(nèi)的學(xué)生中抽取2人,求恰巧抽到1男1女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有
、
兩個自習(xí)教室,甲、乙、丙
名學(xué)生各自隨機(jī)選擇其中一個教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體
中,E,F(xiàn)分別為線段CD和
上的動點(diǎn),且滿足
,則四邊形
所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個面上的正投影的面積之和( 。
![]()
A. 有最小值
B. 有最大值
C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n∈N*且n≥2,集合
(1)寫出集合
中的所有元素;
(2)設(shè)(
,···,
),(
,···,
)∈
,證明“
=
”的充要條件是
=
(i=1,2,3,···,n);
(3)設(shè)集合
={
︳(
,···,
)∈
},求
中所有正數(shù)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線
上有一點(diǎn)
(m>0),點(diǎn)P在軸上的射影恰好是雙曲線C的右焦點(diǎn),過點(diǎn)P作雙曲線C兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,為了控制質(zhì)量,質(zhì)量控制工程師要在產(chǎn)品出廠前對產(chǎn)品進(jìn)行檢驗(yàn).現(xiàn)有
(
且
)份產(chǎn)品,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)
次;(2)混合檢驗(yàn),將這
份產(chǎn)品混合在一起作為一組來檢驗(yàn).若檢測通過,則這
份產(chǎn)品全部為正品,因而這
份產(chǎn)品只要檢驗(yàn)一次就夠了;若檢測不通過,為了明確這
份產(chǎn)品究竟哪幾份是次品,就要對這
份產(chǎn)品逐份檢驗(yàn),此時這
份產(chǎn)品的檢驗(yàn)次數(shù)總共為
次.假設(shè)在接受檢驗(yàn)的樣本中,每份樣本的檢驗(yàn)結(jié)果是正品還是次品都是獨(dú)立的,且每份樣本是次品的概率為
.
(1)如果
,采用逐份檢驗(yàn)方式進(jìn)行檢驗(yàn),求檢測結(jié)果恰有兩份次品的概率;
(2)現(xiàn)對
份產(chǎn)品進(jìn)行檢驗(yàn),運(yùn)用統(tǒng)計(jì)概率相關(guān)知識回答:當(dāng)
和
滿足什么關(guān)系時,用混合檢驗(yàn)方式進(jìn)行檢驗(yàn)可以減少檢驗(yàn)次數(shù)?
(3)①當(dāng)
(
且
)時,將這
份產(chǎn)品均分為兩組,每組采用混合檢驗(yàn)方式進(jìn)行檢驗(yàn),求檢驗(yàn)總次數(shù)
的數(shù)學(xué)期望;
②當(dāng)
(
,且
,
)時,將這
份產(chǎn)品均分為
組,每組采用混合檢驗(yàn)方式進(jìn)行檢驗(yàn),寫出檢驗(yàn)總次數(shù)
的數(shù)學(xué)期望(不需證明).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com