分析 第一象限內的點P(a,b)在直線2x+y-1=0上,可得a,b>0,2a+b=1.利用“乘1法”與基本不等式的性質即可得出.
解答 解:第一象限內的點P(a,b)在直線2x+y-1=0上,∴a,b>0,2a+b=1.
則$\frac{4}{a+b}$+$\frac{1}{a}$=(a+a+b)$(\frac{4}{a+b}+\frac{1}{a})$=5+$\frac{4a}{a+b}$+$\frac{a+b}{a}$≥5+2$\sqrt{\frac{4a}{a+b}×\frac{a+b}{a}}$=9,
當且僅當a=b=$\frac{1}{3}$時取等號,即$\frac{4}{a+b}$+$\frac{1}{a}$取得最小值.
故答案為:$\frac{1}{3}$.
點評 本題考查了點與直線的關系、“乘1法”與基本不等式的性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | y=sin(2x-$\frac{π}{4}$) | B. | y=sin(2x+$\frac{π}{2}$) | C. | y=sin(2x+$\frac{3π}{4}$) | D. | y=sin(2x+$\frac{π}{4}$)-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (0,$\frac{1}{4}$] | B. | [0,$\frac{1}{4}$] | C. | [2,+∞) | D. | (0,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{3}{2}$ | B. | -$\frac{3}{4}$ | C. | $\frac{3}{2}$或-$\frac{3}{4}$ | D. | -$\frac{3}{2}$或-$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a≤0 | B. | a≥-$\frac{5}{2}$ | ||
| C. | -$\frac{5}{2}$≤a≤0 | D. | -3≤a≤0 | ||
| E. | 以上結論均不正確 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com