(12分)雙曲線
(a>1,b>0)的焦距為2c,直線
過(guò)點(diǎn)(a,0)和(0,b),且點(diǎn)(1,0)到直線
的距離與點(diǎn)(-1,0)到直線
的距離之和s≥
c.求雙曲線的離心率e的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
,點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,直線
過(guò)點(diǎn)
交拋物線于
兩點(diǎn).
(1)證明:直線
的斜率互為相反數(shù);
(2)求
面積的最小值;
(3)當(dāng)點(diǎn)
的坐標(biāo)為
,
且
.根據(jù)(1)(2)推測(cè)并回答下列問(wèn)題(不必說(shuō)明理由):①直線
的斜率是否互為相反數(shù)? ②
面積的最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題
滿分12分)已知
是橢圓
的兩個(gè)焦點(diǎn),
是橢圓上的點(diǎn),且
.
(1)求
的周長(zhǎng);
(2)求點(diǎn)
的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2.
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;![]()
(3)在(2)的條件下,線段AB的垂直平分線l0與y軸交于M(0,m),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知離心率為
的橢圓
上的點(diǎn)到
左焦點(diǎn)
的最長(zhǎng)距離為![]()
(1)求橢圓的方程;
(2)如圖,過(guò)橢圓的左焦點(diǎn)
任作一條與兩坐標(biāo)軸都不垂直的弦
,若點(diǎn)
在
軸上,且使得
為
的一條內(nèi)角平分線,則稱點(diǎn)
為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”
的坐標(biāo).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分15分)如圖,設(shè)拋物線
的準(zhǔn)線與x軸交于點(diǎn)
,
焦點(diǎn)為
為焦點(diǎn),離心率為
的橢圓
與拋物線
在x軸上方的交點(diǎn)為P
,延長(zhǎng)
交拋物線于點(diǎn)Q,M是拋物線
上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng)。
1)當(dāng)m=3時(shí),求橢圓
的標(biāo)準(zhǔn)方程;
2)若
且P點(diǎn)橫坐標(biāo)為
,求面積
的最大值![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
過(guò)點(diǎn)且平行于極軸的直線的極坐標(biāo)方程是( )
| A.ρcosθ=4 | B.ρsinθ=4 | C.ρsinθ= | D.ρcosθ= |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知曲線C1的極坐標(biāo)方程為ρcos(θ-
)=-1,曲線C2的極坐標(biāo)方程為ρ=2
cos(θ-
).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)求曲線C2上的動(dòng)點(diǎn)M到曲線C1的距離的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com