分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),要使z=ax+y取最小值的最優(yōu)解有無(wú)窮多個(gè),則目標(biāo)函數(shù)和其中一條直線平行,然后根據(jù)條件即可求出a的值.
解答
解:作出不等式組$\left\{{\begin{array}{l}{x+y-3≥0}\\{2x-y-9≤0}\\{y≤2}\end{array}}\right.$對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=ax+y,得y=-ax+z,
a>0,則目標(biāo)函數(shù)的斜率k=-a<0.
平移直線y=-ax+z,
由圖象可知當(dāng)直線y=-ax+z和直線x+y=3平行時(shí),此時(shí)目標(biāo)函數(shù)取得最小值時(shí)最優(yōu)解有無(wú)數(shù)多個(gè),
此時(shí)-a=-1,即a=1.
故答案為:1.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類(lèi)問(wèn)題的基本方法,利用z的幾何意義是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①②④ | B. | ①③④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | $-\frac{8}{3}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{12}$ | B. | $-\frac{π}{12}$ | C. | $\frac{π}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
| 學(xué)生 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
| 甲 | 65 | 80 | 70 | 85 | 75 |
| 乙 | 80 | 70 | 75 | 80 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{4}<p≤\frac{7}{8}$ | B. | $p>\frac{5}{16}$ | C. | $\frac{7}{8}≤p<\frac{5}{16}$ | D. | $\frac{7}{8}<p≤\frac{5}{16}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com