分析 (I)求出函數(shù)的導(dǎo)數(shù)通過(guò)當(dāng)a≤0時(shí),當(dāng)a>0時(shí),判斷導(dǎo)函數(shù)的符號(hào),推出函數(shù)的單調(diào)區(qū)間.
(II)通過(guò)x1、x2是方程f(x)=c的兩個(gè)不等實(shí)根,由(1)知a>0.設(shè)0<x1<x2,把根代入方程,作差,推出a的表達(dá)式,構(gòu)造函數(shù),利用新函數(shù)的導(dǎo)數(shù),通過(guò)函數(shù)的單調(diào)性利用分析法證明即可.
解答 (12分)
解:(I) f′(x)=2x-(a-2)-$\frac{a}{x}=\frac{{2{x^2}-(a-2)x-a}}{x}=\frac{(2x-a)(x+1)}{x}$(x>0).
當(dāng)a≤0時(shí),f′(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞).
當(dāng)a>0時(shí),由f′(x)>0,得x>$\frac{a}{2}$;由f′(x)<0,得0<x<$\frac{a}{2}$.
所以函數(shù)f(x)的單調(diào)增區(qū)間為$({\frac{a}{2},+∞})$,單調(diào)減區(qū)間為$({0,\frac{a}{2}})$.…(4分)
(II)證明:因?yàn)閤1、x2是方程f(x)=c的兩個(gè)不等實(shí)根,由(1)知a>0.
不妨設(shè)0<x1<x2,則$x_1^2$-(a-2)x1-alnx1=c,$x_2^2$-(a-2)x2-alnx2=c.
兩式相減得$x_1^2$-(a-2)x1-alnx1-$x_2^2$+(a-2)•x2+alnx2=0,
即$x_1^2$+2x1-$x_2^2$-2x2=ax1+alnx1-ax2-alnx2=a(x1+lnx1-x2-lnx2).
所以a=$\frac{{x_1^2+2{x_1}-x_2^2-2{x_2}}}{{{x_1}+ln{x_1}-{x_2}-ln{x_2}}}$.因?yàn)閒′$({\frac{a}{2}})$=0,
當(dāng)x∈$({0,\frac{a}{2}})$時(shí),f′(x)<0,當(dāng)x∈$({\frac{a}{2},+∞})$時(shí),f′(x)>0,
故只要證$({\frac{{{x_1}+{x_2}}}{2}})$>$\frac{a}{2}$即可,即證明x1+x2>$\frac{{x_1^2+2{x_1}-x_2^2-2{x_2}}}{{{x_1}+ln{x_1}-{x_2}-ln{x_2}}}$,
即證明$x_1^2$-$x_2^2$+(x1+x2)(lnx1-lnx2)<$x_1^2$+2x1-$x_2^2$-2x2,
即證明ln $\frac{x_1}{x_2}$<$\frac{{2{x_1}-2{x_2}}}{{{x_1}+{x_2}}}$.設(shè)t=$\frac{x_1}{x_2}$(0<t<1).
令g(t)=lnt-$\frac{2t-2}{t+1}$,則g′(t)=$\frac{1}{t}-\frac{4}{{(t+1{)^2}}}=\frac{{(t-1{)^2}}}{{t(t+1{)^2}}}$.
因?yàn)閠>0,所以g′(t)≥0,當(dāng)且僅當(dāng)t=1時(shí),g′(t)=0,所以g(t)在(0,+∞)上是增函數(shù).
又g(1)=0,所以當(dāng)t∈(0,1)時(shí),g(t)<0總成立.所以原題得證 …(12分)
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性,分類(lèi)討論思想的應(yīng)用,構(gòu)造法的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {0,1,2} | B. | {0,1} | C. | {x|0<x<2} | D. | {x|-3<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com