科目:高中數(shù)學 來源: 題型:
| x-2 |
| x2+2x-3 |
| x-2 |
| x2+2x-3 |
. |
| x |
| 1 |
| n |
| n |
| i=1 |
. |
| y |
| 1 |
| n |
| n |
| i=1 |
| y |
. |
| x |
. |
| y |
| y2 |
| 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| 2 |
| x2 |
| 16 |
| y2 |
| 12 |
| x2 |
| 4-k |
| y2 |
| 3-k |
查看答案和解析>>
科目:高中數(shù)學 來源:2007年上海市高三教學質量檢測數(shù)學試卷(理) 題型:044
已知動點M到定點(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點軌跡為拋物線,并求出其軌跡方程;
(2)大家知道,過圓上任意一點P,任意作相互垂直的弦PA,PB,則弦AB必過圓心(定點),受此啟發(fā),研究下面的問題:
①過(1)中的拋物線的頂點O任作相互垂直的弦OA,OB,則弦AB是否經(jīng)過一個定點?若經(jīng)過定點(設為Q),請求出Q點的坐標,否則說明理由;
②研究:對于拋物線y2=2px上頂點以外的定點是否也有這樣的性質?請?zhí)岢鲆粋一般的結論,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(大綱卷解析版) 題型:解答題
已知拋物線C:
與圓
有一個公共點A,且在A處兩曲線的切線與同一直線l
(I) 求r;
(II) 設m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。
【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎上求解點到直線的距離。
【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導數(shù)的工具性結合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學習也是一個需要練習的方向。
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com