![]()
22.本小題主要考查坐標(biāo)法、定比分點(diǎn)坐標(biāo)公式、雙曲線的概念和性質(zhì)、推理、運(yùn)算能力和綜合應(yīng)用數(shù)學(xué)知識(shí)解決問題的能力.
解:如圖,以AB的垂直平分線為y軸,直線AB為x軸,建立直角坐標(biāo)系xOy,則CD⊥y軸.因?yàn)殡p曲線經(jīng)過點(diǎn)C、D,且以A、B為焦點(diǎn),由雙曲線的對(duì)稱性知C、D關(guān)于y軸對(duì)稱.
![]()
依題意,記A(-c,0),C
,B(x0,y0),其中c=
|AB|為雙曲線的半焦距,h是梯形的高.
由
,即(x0+c,y0)=
(
-x0,h-y0)得
x0=
,y0=
.
設(shè)雙曲線的方程為
-
=1,則離心率e=
.
由點(diǎn)C、E在雙曲線上,將點(diǎn)C、E的坐標(biāo)和e=
代入雙曲線的方程得
由①式得
=
-1, ③
由③式代入②式,整理得
(4-4
)=1+2
,′
故
=1-
. 即
依題設(shè)
≤
≤
得,
≤1-
≤
.
解得
≤e≤
.
所以,雙曲線的離心率的取值范圍為[
,
].
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省溫州市溫州中學(xué)2012屆高三第三次模擬考試數(shù)學(xué)試題 題型:044
如圖,已知平面ABC⊥平面BCDE,△DEF與△ABC分別是棱長為1與2的正三角形,AC∥DF,四邊形BCDE為直角梯形,DE∥BC,BC⊥CD,CD=1,點(diǎn)G為△ABC的重心,N為AB中點(diǎn),
=λ
(λ∈R,λ>0).
(Ⅰ)當(dāng)
時(shí),求證:GM∥平面DFN.
(Ⅱ)若直線MN與CD所成角為
,試求二面角M-BC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南京市高三第二次模擬考試數(shù)學(xué)卷 題型:解答題
在A、B、C、D四小題中只能選做2題,每小題10,共計(jì)20分。請?jiān)诖痤}卡指定區(qū)域作答。解答應(yīng)寫出文字說明、證明過程或演算步驟。
A、選修4-1:幾何證明選講
如圖,已知梯形ABCD為圓內(nèi)接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。
![]()
B、選修4-2:矩形與變換
已知
為矩陣
屬于λ的一個(gè)特征向量,求實(shí)數(shù)a,λ的值及A2。
C、選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為
(α為參數(shù)),曲線D的參數(shù)方程為
,(t為參數(shù))。若曲線C、D有公共點(diǎn),求實(shí)數(shù)m的取值范圍。
D、選修4-5:不等式選講
已知a,b都是正實(shí)數(shù),且ab=2。求證:(1+2a)(1+b)≥9。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:0110 期末題 題型:解答題
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com