(本小題滿分12分)
若函數(shù)
為奇函數(shù),當(dāng)
時(shí),
(如圖).![]()
(Ⅰ)求函數(shù)
的表達(dá)式,并補(bǔ)齊函數(shù)
的圖象;
(Ⅱ)用定義證明:函數(shù)
在區(qū)間
上單調(diào)遞增.
(1)
(2)利用定義法,設(shè)變量,作差,變形,定號(hào),下結(jié)論。
解析試題分析:解:(Ⅰ)
任取
,則
由
為奇函數(shù),
則
………………………4分
綜上所述,
…………………………………………5分
補(bǔ)齊圖象。(略)…………………………………………6分
(Ⅱ)任取
,且
,…………………………………7分
則![]()
………………………………8分![]()
![]()
…………………………………10分
∵
∴![]()
又由
,且
,所以
,∴![]()
∴
,
∴
,即
………………………………………11分
∴函數(shù)
在區(qū)間
上單調(diào)遞增。…………………………12分
考點(diǎn):本試題考查了奇函數(shù)的定義以及函數(shù)單調(diào)性的證明。
點(diǎn)評(píng):解決該試題利用奇函數(shù)關(guān)于原點(diǎn)的對(duì)稱性求解函數(shù)圖像,同時(shí)能利用單調(diào)性的定義法證明單調(diào)性。屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知函數(shù)
在點(diǎn)
處的切線方程為
.
⑴求函數(shù)
的解析式;
⑵若對(duì)于區(qū)間
上任意兩個(gè)自變量的值
都有
,求實(shí)數(shù)
的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)
是區(qū)間[-1,1]上的減函數(shù)
(I)求
的值;
(II)求
的取值范圍;
(III)若
在
上恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量
,設(shè)函數(shù)
的圖象關(guān)于直線
=π對(duì)稱,其中
為常數(shù),且
.
(Ⅰ)求函數(shù)
的最小正周期;
(Ⅱ)若
的圖象經(jīng)過點(diǎn)
,求函數(shù)
在區(qū)間
上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知函數(shù)f (x)=-
ax3+
x2+(a-1)x-
(x>0),(aÎR).
(Ⅰ)當(dāng)0<a<
時(shí),討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且
.
設(shè)點(diǎn)
是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)
分別作直線
和
軸的垂線,垂足分別為
.![]()
(1)寫出
的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:
是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;(7分)
(3)設(shè)
為坐標(biāo)原點(diǎn),求四邊形
面積的最小值.(7分)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com