已知函數(shù)
,
.
(Ⅰ)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
時,函數(shù)
在
上的最大值為
,若存在
,使得
成立,求實(shí)數(shù)b的取值范圍.
(Ⅰ)曲線
在點(diǎn)
處的切線方程
。
(Ⅱ)函數(shù)
的遞增區(qū)間為
,遞減區(qū)間為
。
(Ⅲ)
的取值范圍是
.
【解析】
試題分析:(Ⅰ)當(dāng)
時,
1分
.2分
所以曲線
在點(diǎn)
處的切線方程
3分
(Ⅱ)
4分
當(dāng)
時,解
,得
,解
,得![]()
所以函數(shù)
的遞增區(qū)間為
,遞減區(qū)間為在
5分
時,令
得
或![]()
。┊(dāng)
時,![]()
|
x |
|
|
|
|
|
|
f’(x) |
+ |
|
- |
|
+ |
|
f(x) |
增 |
|
減 |
|
增 |
6分
函數(shù)
的遞增區(qū)間為
,
,遞減區(qū)間為
7分
ⅱ)當(dāng)
時,
在
上
,在
上
8分
函數(shù)
的遞增區(qū)間為
,遞減區(qū)間為
9分
(Ⅲ)由(Ⅱ)知,當(dāng)
時,
在
上是增函數(shù),在
上是減函數(shù),
所以
,
11分
存在
,使
即存在
,使
,
方法一:只需函數(shù)
在[1,2]上的最大值大于等于
所以有
即
解得:
13分
方法二:將
整理得![]()
從而有
所以
的取值范圍是
.
13分
考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式恒成立問題。
點(diǎn)評:中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的常見問題,通過研究函數(shù)的單調(diào)性,明確最值情況。曲線切線的斜率,等于函數(shù)在切點(diǎn)處的導(dǎo)函數(shù)值。在給定區(qū)間,如果函數(shù)的導(dǎo)數(shù)非負(fù),則函數(shù)為增函數(shù),如果函數(shù)的導(dǎo)數(shù)非正,則函數(shù)為減函數(shù)。涉及不等式恒成立問題,往往通過構(gòu)造函數(shù),研究函數(shù)的最值,得到確定參數(shù)(范圍)的目的。對數(shù)函數(shù)要注意其真數(shù)大于0.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
| π |
| 24 |
| 5π |
| 24 |
| π |
| 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 11π |
| 6 |
| ||
| 2 |
| 3 |
| π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com