欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知函數(shù)f(x)是奇函數(shù),當x∈(-∞,0)時,f(x)=$\frac{x}{1-x}$.
(1)求f(1)的值;
(2)求函數(shù)f(x)在(0,+∞)上的解析式;
(3)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論.

分析 (1)利用f(1)=-f(-1),可得結(jié)論;
(2)任取x∈(0,+∞),則x∈(-∞,0),結(jié)合條件求函數(shù)f(x)在(0,+∞)上的解析式;
(3)設(shè)任取x1,x2∈(0,+∞),且x1<x2,然后作差,通分,證明f(x1)<f(x2),便可得出f(x)在(0,+∞)上單調(diào)遞增

解答 解:(1)因為函數(shù)f(x)是奇函數(shù),所以f(1)=-f(-1)=$\frac{1}{2}$.…(3分)
(2)任取x∈(0,+∞),則x∈(-∞,0),所以f(-x)=$\frac{-x}{1+x}$.…(5分)     
因為f(x)是奇函數(shù),所以f(-x)=-f(x).
所以f(x)=-f(-x)=$\frac{x}{1+x}$.…(7分)
(3)函數(shù)f(x)在(0,+∞)上為增函數(shù).…(8分)
證明:任取x1,x2∈(0,+∞),且x1<x2
則f(x1)-f(x2)=$\frac{{x}_{1}}{1+{x}_{1}}$-$\frac{{x}_{2}}{1+{x}_{2}}$=$\frac{{x}_{1}-{x}_{2}}{(1+{x}_{1})(1+{x}_{2})}$.…(10分)
因為x1,x2∈(0,+∞),所以1+x1,1+x2>0,
因為x1<x2,所以x1-x2<0.
因此$\frac{{x}_{1}-{x}_{2}}{(1+{x}_{1})(1+{x}_{2})}$<0,即f(x1)-f(x2)<0.
所以f(x1)<f(x2),所以函數(shù)f(x)在(0,+∞)上為增函數(shù).…(12分)

點評 考查函數(shù)解析式及奇函數(shù)的定義,根據(jù)增函數(shù)的定義判斷并證明一個函數(shù)為增函數(shù)的方法和過程,作差的方法比較f(x1),f(x2),作差后是分式的一般要通分.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=a+$\frac{2}{{2}^{x}+1}$(x∈R)是奇函數(shù).
(1)求常數(shù)a的值;
(2)若f(x)>0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$離心率為$\frac{{\sqrt{2}}}{2}$,點P(0,1)在短軸CD上,且$\overrightarrow{PC}•\overrightarrow{PD}=-1$.
(I)求橢圓E的方程;
(Ⅱ)過點P的直線l與橢圓E交于A,B兩點.
(i)若$\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AP}$,求直線l的方程;
(ii)在y軸上是否存在與點P不同的定點Q,使得$\frac{{\left|{QA}\right|}}{{\left|{QB}\right|}}=\frac{{\left|{PA}\right|}}{{\left|{PB}\right|}}$恒成立,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),則實數(shù)m的取值范圍是(-4,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓O的直徑AB=4,定直線l到圓心的距離為6,且直線l⊥直線AB.點P是圓上異于A、B的任意一點,直線PA、PB分別交l于M、N點.如圖,以AB為x軸,圓心O為原點建立平面直角坐標系xOy.
(1)若∠PAB=30°,求以MN為直徑的圓的方程;
(2)當點P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列正確的是(  )
A.如果兩個復(fù)數(shù)的積是實數(shù),那么這兩個復(fù)數(shù)互為共軛復(fù)數(shù)
B.用反證法證明命題“設(shè)a,b為實數(shù),則方程x2+ax+b=0至少有一個實根”時,要做的假設(shè)是:方程x2+ax+b=0至多有一個實根
C.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…則可得到a10+b10=122
D.在復(fù)平面中復(fù)數(shù)z滿足|z|=2的點的軌跡是以原點為圓心,以2為半徑的圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列語句是真命題的是( 。
A.x>1B.若a>b,則a2>ab
C.y=sinx是奇函數(shù)嗎?D.若a-2是無理數(shù),則a是無理數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2x,x∈(0,2)的值域為A,函數(shù)g(x)=log2(x-2a)+$\sqrt{a+1-x}$(a<1)的定義域為B.
(Ⅰ)求集合A,B;
(Ⅱ)若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,在等腰直角三角形ABC中,AB=AC=$\sqrt{2}$,D,E是線段BC上的點,且DE=$\frac{1}{3}$BC,則$\overrightarrow{AD}$•$\overrightarrow{AE}$的取值范圍是( 。
A.$[{\frac{8}{9},\;\frac{4}{3}}]$B.$[{\frac{4}{3},\;\frac{8}{3}}]$C.$[{\frac{8}{9},\;\frac{8}{3}}]$D.$[{\frac{4}{3},\;+∞})$

查看答案和解析>>

同步練習冊答案