【題目】設(shè)某物體一天中的溫度
是時(shí)間
的函數(shù),已知
,其中溫度的單位是
,時(shí)間的單位是小時(shí),規(guī)定中午12:00相應(yīng)的
,中午12:00以后相應(yīng)的
取正數(shù),中午12:00以前相應(yīng)的
取負(fù)數(shù)(例如早上8:00相應(yīng)的
,下午16:00相應(yīng)的
),若測(cè)得該物體在中午12:00的溫度為
,在下午13:00的溫度為
,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度
關(guān)于時(shí)間
的函數(shù)關(guān)系式;
(2)該物體在上午10:00至下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?
【答案】(Ⅰ)
(Ⅱ)在上午11:00與下午14:00該物體溫度最高,最高溫度是62.℃.
【解析】試題分析:(1)由題意可得當(dāng)
時(shí),
; 當(dāng)
時(shí),
;
,由此求得待定系數(shù)
的值,可得函數(shù)的解析式.
(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由單調(diào)性求得函數(shù)的最大值,從而得出結(jié)論.
試題解析:
(Ⅰ)求導(dǎo)函數(shù)可得
,
∵該物體的溫度在早上8:00與下午16:00有相同的變化率
∴
,∴
,∴
∴
∵該物體的溫度在中午12:00的溫度是60℃,下午13:00的溫度為58℃
∴
∴
∴
(Ⅱ)
![]()
令
可得
或
;令
可得![]()
∴函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減,在
上單調(diào)遞增
∵![]()
∴
或
時(shí),
取得最大值62.
說明在上午11:00與下午14:00該物體溫度最高,最高溫度是62.℃.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在區(qū)間
上有最大值3和最小值
.
(1)求實(shí)數(shù)
的值;
(2)設(shè)
,若不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在探究實(shí)系數(shù)一元二次方程的根與系數(shù)的關(guān)系時(shí),可按下述方法進(jìn)行:
設(shè)實(shí)系數(shù)一元二次方程
……①
在復(fù)數(shù)集
內(nèi)的根為
,
,則方程①可變形為
,
展開得
.……②
比較①②可以得到: ![]()
類比上述方法,設(shè)實(shí)系數(shù)一元
次方程
(
且
)在復(fù)數(shù)集
內(nèi)的根為
,
,…,
,則這
個(gè)根的積
__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
,
,則對(duì)于不同的實(shí)數(shù)
,函數(shù)
的單調(diào)區(qū)間個(gè)數(shù)不可能是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
是自然對(duì)數(shù)的底數(shù)),
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)
,其中
為
的導(dǎo)函數(shù),證明:對(duì)任意
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
過點(diǎn)
,求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)
在區(qū)間
上的最大值;
(3)若函數(shù)
有兩個(gè)不同的零點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次反恐演習(xí)中,我方三架武裝直升機(jī)分別從不同方位對(duì)同一目標(biāo)發(fā)動(dòng)攻擊(各發(fā)射一枚導(dǎo)彈),由于天氣原因,三枚導(dǎo)彈命中目標(biāo)的概率分別為0.9,0.9,0.8,若至少有兩枚導(dǎo)彈命中目標(biāo)方可將其摧毀,則目標(biāo)被摧毀的概率為( )
A. 0.998 B. 0.046 C. 0.002 D. 0.954
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;
方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為
.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.
方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為
,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.
(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金
(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】讀下列所給程序,依據(jù)程序畫出程序框圖,并說明其功能.
INPUT “輸入三個(gè)正數(shù)a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面積S=”S
ELSE
PRINT “構(gòu)不成三角形”
END IF
END.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com