分析 (I)由題意可得:an=a1+2(n-1),$_{2}^{2}$=b1b3,$({a}_{1}+6)^{2}$=a1(a1+24),解得a1,可得an.設(shè)等比數(shù)列{bn}的公比為q,則q=$\frac{_{2}}{_{1}}$=$\frac{{a}_{4}}{{a}_{1}}$.可得數(shù)列{bn}的前項和Bn.
(Ⅱ)由(I)可得:Sn=n2+2n.因此$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂項求和”即可得出.
解答 解:(I)由題意可得:an=a1+2(n-1),$_{2}^{2}$=b1b3,$({a}_{1}+6)^{2}$=a1(a1+24),解得a1=3.
∴an=3+2(n-1)=2n+1.
設(shè)等比數(shù)列{bn}的公比為q,則q=$\frac{_{2}}{_{1}}$=$\frac{{a}_{4}}{{a}_{1}}$=$\frac{9}{3}$=3.
∴數(shù)列{bn}的前項和Bn=$\frac{3({3}^{n}-1)}{3-1}$=$\frac{3}{2}({3}^{n}-1)$.
(Ⅱ)由(I)可得:Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴數(shù)列$\{\frac{1}{S_n}\}$的前項和為Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | l | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{7}{2}$ | B. | -$\frac{7}{2}$ | C. | $\frac{7}{2}$或-$\frac{7}{2}$ | D. | 7或-7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com