橢圓

+

=1(a>b>0)的兩頂點(diǎn)為A(a,0),B(0,b),且左焦點(diǎn)為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為( )
由題可知△ABF為直角三角形,其中|AB|=

,|BF|=a,|AF|=a+c,由勾股定理,|AF|
2=|AB|
2+|BF|
2即(a+c)
2=a
2+b
2+a
2=2a
2+a
2-c
2,整理得c
2+ac-a
2=0,同除a
2得e
2+e-1=0,∴e=

,∵e∈(0,1),∴e=

.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知點(diǎn)M(

,0),橢圓

+y
2=1與直線y=k(x+

)交于點(diǎn)A、B,則△ABM的周長(zhǎng)為( )
A.4 B.8 C.12 D.16
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若橢圓

+

=1與雙曲線

-

=1(m,n,p,q均為正數(shù))有共同的焦點(diǎn)F
1,F(xiàn)
2,P是兩曲線的一個(gè)公共點(diǎn),則

·

=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)橢圓E:

+

=1(a>b>0)的上焦點(diǎn)是F
1,過(guò)點(diǎn)P(3,4)和F
1作直線PF
1交橢圓于A,B兩點(diǎn),已知A(

,

).
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)C是橢圓E上到直線PF
1距離最遠(yuǎn)的點(diǎn),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知橢圓C:

+

=1(b>0),直線l:y=mx+1,若對(duì)任意的m∈R,直線l與橢圓C恒有公共點(diǎn),則實(shí)數(shù)b的取值范圍是( )
| A.[1,4) | B.[1,+∞) |
| C.[1,4)∪(4,+∞) | D.(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
圓

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線

過(guò)點(diǎn)P且離心率為

.
(1)求

的方程;
(2)橢圓

過(guò)點(diǎn)P且與

有相同的焦點(diǎn),直線

過(guò)

的右焦點(diǎn)且與

交于A,B兩點(diǎn),若以線段AB為直徑的圓心過(guò)點(diǎn)P,求

的方程.

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知點(diǎn)

是橢圓

上任一點(diǎn),點(diǎn)

到直線

的距離為

,到點(diǎn)

的距離為

,且

.直線

與橢圓

交于不同兩點(diǎn)

、

(

,

都在

軸上方),且

.
(1)求橢圓

的方程;
(2)當(dāng)

為橢圓與

軸正半軸的交點(diǎn)時(shí),求直線

方程;
(3)對(duì)于動(dòng)直線

,是否存在一個(gè)定點(diǎn),無(wú)論

如何變化,直線

總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知

為橢圓

的兩個(gè)焦點(diǎn),過(guò)

的直線交橢圓于兩點(diǎn),

,
則

( )
查看答案和解析>>