【題目】已知{an}為等比數(shù)列,a1=1,a6=243.Sn為等差數(shù)列{bn}的前n項和,b1=1,S5=25.
(1)求{an}和{bn}的通項公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn , 求Tn .
【答案】
(1)解:設(shè){an}的公比為q,數(shù)列{bn}的公差為d,
a6=a1q5=q5=243,S5=5b1+
=5+10d=25,
解得q=3,d=2.
∴
.bn=1+2(n﹣1)=2n﹣1.
(2)∵Tn=a1b1+a2b2+…+anbn,
∴
,①
∴
,②
①﹣②得:
,
∴Tn=(n﹣1)×3n+1.
【解析】(1)根據(jù)等差數(shù)列,等比數(shù)列的通項公式,求和公式列方程解出公差與公比,得出通項公式;(2)使用錯位相減法求和.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系
;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實數(shù),記函數(shù)f(x)=a
+
+
的最大值為g(a).
(1)設(shè)t=
+
,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g(
)的所有實數(shù)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為(0,+∞),且對一切x>0,y>0都有
,當(dāng)
時,有![]()
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足
=λ
+μ
(1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為4,則ab﹣a﹣b=( )
A.﹣1
B.﹣ ![]()
C.![]()
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=9,an+1=an+2n+5;數(shù)列{bn}滿足b1=
,bn+1=
bn(n≥1).
(1)求an , bn;
(2)記數(shù)列{
}的前n項和為Sn , 證明:
≤Sn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)已知正數(shù)x,y滿足x+2y=1,求 1 x + 1 y 的最小值
(2)已知x>1,求:y=x+
最小值,并求相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線
經(jīng)過點
傾斜角為
.(10分).
(1)寫出直線
的參數(shù)方程
(2)求直線
與直線
的交點到點
的距離
(3)設(shè)
與圓
相交于兩點
,求點
到
兩點的距離的和與積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,(
)
(1)當(dāng)
時,求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求
的取值范圍;
(3)求函數(shù)
在區(qū)間
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com