(1)若方程f(x)+6a=0有兩個(gè)相等的根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求a的取值范圍.
解:(1)∵f(x)+2x>0的解集為(1,3),
∴f(x)+2x=a(x-1)(x-3),且a<0.
因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.? ①
由方程f(x)+6a=0,得
ax2-(2+4a)x+9a=0. ②
∵方程②有兩個(gè)相等的根,
∴Δ=[-(2+4a)]2-4a·9a=0,
即5a2-4a-1=0.
解得a=1或a=-
.
由于a<0,舍去a=1.
將a=-
代入①得f(x)的解析式f(x)=-
x2-
.
(2)由f(x)=ax2-2(1+2a)x+3a
=a(x-
)2-![]()
及a<0,可得f(x)的最大值為-
.
由![]()
解得a<-2-
或-2+
<a<0.
故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是(-∞,-2-
)∪(-2+
,0).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 2 |
| 5 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 2 |
| 3 |
| x |
| 1 |
| 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| bx-1 | a2x+2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| -x2-x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| bx-1 | a2x+2b |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com