【題目】在直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標原點為極點,
軸正半軸為極軸的建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程;
(2)若點
與點
分別為曲線
動點,求
的最小值,并求此時的
點坐標.
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解高三男生的體能達標情況,抽調(diào)了120名男生進行立定跳遠測試,根據(jù)統(tǒng)計數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠成績落在區(qū)間
的左側(cè),則認為該學生屬“體能不達標的學生,其中
分別為樣本平均數(shù)和樣本標準差,計算可得
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
![]()
(1)若該校高三某男生的跳遠距離為
,試判斷該男生是否屬于“體能不達標”的學生?
(2)該校利用分層抽樣的方法從樣本區(qū)間
中共抽出5人,再從中選出兩人進行某體能訓練,求選出的兩人中恰有一人跳遠距離在
的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,
是正方形,點
在以
為直徑的半圓弧上(
不與
,
重合),
為線段
的中點,現(xiàn)將正方形
沿
折起,使得平面
平面
.
![]()
(1)證明:
平面
.
(2)若
,當三棱錐
的體積最大時,求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為梯形,AB//CD,∠BAD=60°,CD=1,AD=2,AB=4,點G在線段AB上,AG=3GB,AA1=1
(1)證明:D1G/平面BB1C1C,
(2)求二面角A1-D1G-A的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體
,過對角線
作平面
交棱
于點E,交棱
于點F,則:
①平面
分正方體所得兩部分的體積相等;
②四邊形
一定是平行四邊形;
③平面
與平面
不可能垂直;
④四邊形
的面積有最大值.
其中所有正確結(jié)論的序號為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
為自然對數(shù)的底數(shù)).
(1)求函數(shù)
的零點
,以及曲線
在
處的切線方程;
(2)設方程
(
)有兩個實數(shù)根
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
![]()
(1)求異面直線PB與CD所成角的余弦值;
(2)求平面PAD與平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高爾頓板是英國生物統(tǒng)計學家高爾頓設計用來研究隨機現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯開的圓柱形小木塊,小木塊之間留有適當?shù)目障蹲鳛橥ǖ溃懊鎿跤幸粔K玻璃,讓一個小球從高爾頓板上方的通道口落下,小球在下落的過程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的小木塊中,上面7層為高爾頓板,最下面一層為改造的高爾頓板,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以
的概率向左或向右滾下,依次經(jīng)過6次與小木塊碰撞,最后掉入編號為1,2…,7的球槽內(nèi).例如小球要掉入3號球槽,則在前5次碰撞中有2次向右3次向左滾到第6層的第3個空隙處,再以
的概率向左滾下,或在前5次碰撞中有1次向右4次向左滾到第6層的第2個空隙處,再以
的概率向右滾下.
![]()
(1)若進行一次高爾頓板試驗,求小球落入第7層第6個空隙處的概率;
(2)小明同學在研究了高爾頓板后,利用該圖中的高爾頓板來到社團文化節(jié)上進行盈利性“抽獎”活動,8元可以玩一次高爾頓板游戲,小球掉入X號球槽得到的獎金為
元,其中
.
(i)求X的分布列:
(ii)高爾頓板游戲火爆進行,很多同學參加了游戲,你覺得小明同學能盈利嗎?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com