【題目】已知函數(shù)
,
,
(1)求
的解析式;
(2)關(guān)于
的不等式
的解集為一切實(shí)數(shù),求實(shí)數(shù)
的取值范圍;
(3)關(guān)于
的不等式
的解集中的正整數(shù)解恰有
個(gè),求實(shí)數(shù)
的取值范圍.
【答案】(1)
; (2)
; (3)
.
【解析】
(1)根據(jù)函數(shù)
的解析式進(jìn)行化簡(jiǎn),即可求解;
(2)由(1)化簡(jiǎn)
,并分離參數(shù),利用換元法,構(gòu)造法求出函數(shù)的最值,即可求解;
(3)由(1)化簡(jiǎn)
,結(jié)合條件將不等式化為
,利用函數(shù)
的性質(zhì),列出不等式,即可求解.
(1)由題意,函數(shù)
,
,則
,
所以函數(shù)
的解析式
;
(2)由(1)和
,可得
,
即
的解集為
,
設(shè)
,則
,即
,
又由函數(shù)
在
為單調(diào)遞增函數(shù),
所以當(dāng)
時(shí),函數(shù)
的最小值為
,則
,
即實(shí)數(shù)
的取值范圍是
.
(3)由(1)和
,可得
,
因?yàn)椴坏仁?/span>
的解集中正整數(shù)解恰好由3個(gè),
所以當(dāng)
時(shí),有
,
若
,則該不等式在
上恒成立,與題設(shè)矛盾.
故
,所以
,
設(shè)不等式
的解集為
,
又由函數(shù)
的性質(zhì)和條件,
可得
,所以
,
解得
,即實(shí)數(shù)
的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市堅(jiān)持農(nóng)業(yè)與旅游融合發(fā)展,著力做好旅游各要素,完善旅游業(yè)態(tài),提升旅游接待能力.為了給游客提供更好的服務(wù),旅游部門(mén)需要了解游客人數(shù)的變化規(guī)律,收集并整理了
年
月至
年
月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了如圖所示的折線(xiàn)圖.根據(jù)該折線(xiàn)圖,下列結(jié)論正確的是( )
![]()
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,四邊形
為等腰梯形,
∥
,
,
,四邊形
為正方形,平面
平面
.
(Ⅰ)若點(diǎn)
是棱
的中點(diǎn),求證:
∥平面
;
(Ⅱ)求直線(xiàn)
與平面
所成角的正弦值;
(Ⅲ)在線(xiàn)段
上是否存在點(diǎn)
,使平面
平面
?若存在,求
的值;若不存在,說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
,若存在區(qū)間
使得
:
(Ⅰ)
在
上是單調(diào)函數(shù);
(Ⅱ)
在
上的值域是
,
則稱(chēng)區(qū)間
為函數(shù)
的“倍值區(qū)間”.
下列函數(shù)中存在“倍值區(qū)間”的有______________(填上所有你認(rèn)為正確的序號(hào))
①
; ②
;
③
; ④
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家A1,A2,A3和3個(gè)歐洲國(guó)家B1,B2,B3中選擇2個(gè)國(guó)家去旅游.
(1)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(2)若從亞洲國(guó)家和歐洲國(guó)家中各選1個(gè),求這兩個(gè)國(guó)家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某房地產(chǎn)公司新建小區(qū)有A、B兩種戶(hù)型住宅,其中A戶(hù)型住宅每套面積為100平方米,B戶(hù)型住宅每套面積為80平方米,該公司準(zhǔn)備從兩種戶(hù)型住宅中各拿出12套銷(xiāo)售給內(nèi)部員工,表是這24套住宅每平方米的銷(xiāo)售價(jià)格:(單位:萬(wàn)元平方米):
房號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A戶(hù)型 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 2.9 | 3.1 | 3.4 | 3.3 | 3.4 | 3.5 |
B戶(hù)型 | 3.6 | 3.7 | 3.7 | 3.9 | 3.8 | 3.9 | 4.2 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 |
(1)根據(jù)表格數(shù)據(jù),完成下列莖葉圖,并分別求出A,B兩類(lèi)戶(hù)型住宅每平方米銷(xiāo)售價(jià)格的中位數(shù);
A戶(hù)型 | B戶(hù)型 | |
2. | ||
3. | ||
4. |
(2)該公司決定對(duì)上述24套住房通過(guò)抽簽方式銷(xiāo)售,購(gòu)房者根據(jù)自己的需求只能在其中一種戶(hù)型中通過(guò)抽簽方式隨機(jī)獲取房號(hào),每位購(gòu)房者只有一次抽簽機(jī)會(huì),小明是第一位抽簽的員工,經(jīng)測(cè)算其購(gòu)買(mǎi)能力最多為320萬(wàn)元,抽簽后所抽得住房?jī)r(jià)格在其購(gòu)買(mǎi)能力范圍內(nèi)則確定購(gòu)買(mǎi),否則,將放棄此次購(gòu)房資格,為了使其購(gòu)房成功的概率更大,他應(yīng)該選擇哪一種戶(hù)型抽簽?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某環(huán)線(xiàn)地鐵按內(nèi)、外環(huán)線(xiàn)同時(shí)運(yùn)行,內(nèi)、外環(huán)線(xiàn)的長(zhǎng)均為30千米(忽略?xún)?nèi)、外環(huán)線(xiàn)長(zhǎng)度差異).
(1)當(dāng)9列列車(chē)同時(shí)在內(nèi)環(huán)線(xiàn)上運(yùn)行時(shí),要使內(nèi)環(huán)線(xiàn)乘客最長(zhǎng)候車(chē)時(shí)間為10分鐘,求內(nèi)環(huán)線(xiàn)列車(chē)的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線(xiàn)列車(chē)平均速度為25千米/小時(shí),外環(huán)線(xiàn)列車(chē)平均速度為30千米/小時(shí).現(xiàn)內(nèi)、外環(huán)線(xiàn)共有18列列車(chē)全部投入運(yùn)行,要使內(nèi)外環(huán)線(xiàn)乘客的最長(zhǎng)候車(chē)時(shí)間之差不超過(guò)1分鐘,向內(nèi)、外環(huán)線(xiàn)應(yīng)各投入幾列列車(chē)運(yùn)行?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)
的焦點(diǎn)為
,過(guò)點(diǎn)
的直線(xiàn)交拋物線(xiàn)于
,
兩點(diǎn).
(1)
為坐標(biāo)原點(diǎn),求證:
;
(2)設(shè)點(diǎn)
在線(xiàn)段
上運(yùn)動(dòng),原點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱(chēng)點(diǎn)為
,求四邊形
面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
在
上的最值;
(2)若
,當(dāng)
有兩個(gè)極值點(diǎn)
時(shí),總有
,求此時(shí)實(shí)數(shù)
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com