解答:解:(Ⅰ)
f(x)=lnx-ax+-1(x>0),
f′(x)=-a+=(x>0)令h(x)=ax
2-x+1-a(x>0)
(1)當a=0時,h(x)=-x+1(x>0),
當x∈(0,1),h(x)>0,f′(x)<0,函數(shù)f(x)單調遞減;
當x∈(1,+∞),h(x)<0,f′(x)>0,函數(shù)f(x)單調遞增.
(2)當a≠0時,由f′(x)=0,即ax
2-x+1-a=0,解得
x1=1,x2=-1.
當
a=時x
1=x
2,h(x)≥0恒成立,此時f′(x)≤0,函數(shù)f(x)單調遞減;
當
0<a<時,
-1>1>0,x∈(0,1)時h(x)>0,f′(x)<0,函數(shù)f(x)單調遞減;
x∈(1,-1)時,h(x)<0,f′(x)>0,函數(shù)f(x)單調遞增;
x∈(-1,+∞)時,h(x)>0,f′(x)<0,函數(shù)f(x)單調遞減.
當a<0時
-1<0,當x∈(0,1),h(x)>0,f′(x)<0,函數(shù)f(x)單調遞減;
當x∈(1,+∞),h(x)<0,f′(x)>0,函數(shù)f(x)單調遞增.
綜上所述:當a≤0時,函數(shù)f(x)在(0,1)單調遞減,(1,+∞)單調遞增;
當
a=時x
1=x
2,h(x)≥0恒成立,此時f′(x)≤0,函數(shù)f(x)在(0,+∞)單調遞減;
當
0<a<時,函數(shù)f(x)在(0,1)單調遞減,
(1,-1)單調遞增,
(-1,+∞)單調遞減.
(Ⅱ)當
a=時,f(x)在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),所以對任意x
1∈(0,2),
有
f(x1)≥f(1)=-,
又已知存在x
2∈[1,2],使f(x
1)≥g(x
2),所以
-≥g(x2),x
2∈[1,2],(※)
又g(x)=(x-b)
2+4-b
2,x∈[1,2]
當b<1時,g(x)
min=g(1)=5-2b>0與(※)矛盾;
當b∈[1,2]時,g(x)
min=g(b)=4-b
2≥0也與(※)矛盾;
當b>2時,
g(x)min=g(2)=8-4b≤-,b≥.
綜上,實數(shù)b的取值范圍是
[,+∞).