【題目】如圖,已知
,
,且
是
的中點(diǎn),
.
![]()
(1)求證:
;
(2)求證:平面
平面
;
(3)求
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2)證明見解析;(3)
。
【解析】
(1)取
的中點(diǎn)
,可以利用中位線定理,根據(jù)已知的平行關(guān)系和長(zhǎng)度關(guān)系,可以得到一個(gè)平行四邊形,利用平行四邊形的對(duì)邊平行,這樣得到線線平行,也就能證明出線面平行;
(2)通過已知和(1)可知
,通過線面垂直和平行線的性質(zhì),可以
這樣可以證明出線面垂直,而
從而證明出
平面
利用面面垂直的判定定理可以證明出平面
平面
;
(3)通過(2)證明出的線面垂直關(guān)系,找到線面角,利用勾股定理、平行四邊形的性質(zhì),求出相關(guān)的邊,利用正弦的定義,求出
與平面
所成角的正弦值。
![]()
(1)如上圖,取
的中點(diǎn)
,連接
,
由
是
的中點(diǎn),
且
又
,且![]()
且
.
是平行四邊形,從而
,
又
平面
,
平面
, 因此
;
(2)證明:
是
的中點(diǎn),
,
因?yàn)?/span>
平面
,
,所以
平面
,
又
平面
而
平面![]()
由
可知
平面
平面
,
平面
平面
;
(3)由(2)知
平面
是
在平面
的射影,則
與平面
所成的角為
,因?yàn)?/span>
,所以
,由(1)可知:
是平行四邊形,從而
,
在
中,![]()
與平面
所成角的正弦值是
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)
圖象在點(diǎn)
處的切線與
的圖象相切,求
的值;
(3)若函數(shù)
存在兩個(gè)極值點(diǎn)
,
,且
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,邊
,
,
所在直線的方程分別為
,
,
.
(1)求
邊上的高所在的直線方程;
(2)若圓
過直線
上一點(diǎn)及
點(diǎn),當(dāng)圓
面積最小時(shí),求其標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量
,
,其中
,則下列判斷錯(cuò)誤的是( )
A.向量
與
軸正方向的夾角為定值(與
、
之值無(wú)關(guān))
B.
的最大值為![]()
C.
與
夾角的最大值為![]()
D.
的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省確定從2021年開始,高考采用“
”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取
名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的
名學(xué)生中含男生110人,求
的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的n名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的
列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?
說明你的理由;
![]()
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:
,其中
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
,求實(shí)數(shù)
的取值范圍;
(2)設(shè)函數(shù)
的極大值為
,極小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款面向中學(xué)生的應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng)。這款軟件的激活碼為下面數(shù)學(xué)題的答案:記集合
.例如:
,若將集合
的各個(gè)元素之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為____________;
定義
現(xiàn)指定
,將集合
的元素從小到大排列組成數(shù)列
,若將
的各項(xiàng)之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對(duì)學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀(體育成績(jī)滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí)) | 14 | 11 | 13 | 12 | 9 |
體育成績(jī)優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請(qǐng)根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):
,
.
參考公式:
,
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com