給出下列命題①若函數(shù)f(x)的圖象過點(diǎn)(2,1),則f(x-1)的圖象必過(3,1)點(diǎn);②y=lg|x|為偶函數(shù),③若y=f(x)在區(qū)間(1,2)上遞增,則y=-f(x)在區(qū)間(1,2)遞減;④函數(shù)f(x)=x2-2x+3有兩個(gè)零點(diǎn);⑤函數(shù)y=x2-x+1的零點(diǎn)可以用二分法求得近似值,其中正確的是( )
A.①②③
B.①②④
C.①②⑤
D.①③
【答案】分析:函數(shù)f(x)的圖象過點(diǎn)(2,1),即當(dāng)函數(shù)值為1時(shí),自變量可為2,由此可令x-1=2求出此時(shí)x的值及對(duì)應(yīng)的y的值,即可求得函數(shù)圖象所過定點(diǎn),可判定①的真假,根據(jù)偶函數(shù)的定義可判定②的真假,根據(jù)對(duì)稱性可得單調(diào)性,從而判定③的真假,根據(jù)方程有無實(shí)根可判定④⑤的真假.
解答:解:由題意函數(shù)f(x)的圖象過點(diǎn)(2,1),即當(dāng)函數(shù)值為1時(shí),自變量可為2,由此知,當(dāng)函數(shù)f(x-1)的函數(shù)值為1時(shí),x-1=2有意義,即x=3所以函數(shù)f(x-1)的圖象必過點(diǎn)(3,1),故①正確;
y=lg|-x|=lg|x|,∴y=lg|x|為偶函數(shù),故②正確;
若y=f(x)在區(qū)間(1,2)上遞增,則y=-f(x)在區(qū)間(1,2)的單調(diào)性與y=f(x)在區(qū)間(1,2)上單調(diào)性相反,故③正確;
令x2-2x+3=0,方程無解,故函數(shù)f(x)=x2-2x+3有沒有零點(diǎn),故④不正確;
函數(shù)y=x2-x+1的沒有零點(diǎn),則不可以用二分法求得近似值,故⑤不正確;
故選A.
點(diǎn)評(píng):本題主要考查了函數(shù)零點(diǎn),以及函數(shù)單調(diào)性和奇偶性的判定,同時(shí)考查了分析問題的能力,屬于基礎(chǔ)題.