分析 (1)當(dāng)n≥2時,則an=Sn-Sn-1=2n,當(dāng)n=1時,a1=S1=2,成立,即可求得求數(shù)列{an}的通項公式;
(2)由$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,利用“錯位相減法”即可求得Tn.
解答 解:(1)由Sn=n2+n,
當(dāng)n≥2時,則Sn-1=(n-1)2+(n-1),
則an=Sn-Sn-1=2n,
當(dāng)n=1時,a1=S1=2,成立,
∴數(shù)列{an}的通項公式an=2n;
(2)由$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}的前n項和為Tn,Tn=$\frac{1}{{2}^{0}}$+$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
則$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
兩式相減得:$\frac{1}{2}$Tn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$,
$\frac{1}{2}$Tn=1+$\frac{\frac{1}{2}-\frac{1}{{2}^{n-1}}×\frac{1}{2}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$,
=$\frac{{2}^{n+1}-n-2}{{2}^{n}}$,
∴Tn=$\frac{{2}^{n+1}-n-2}{{2}^{n-1}}$,
數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}的前n項和為Tn,Tn=$\frac{{2}^{n+1}-n-2}{{2}^{n-1}}$.
點評 本題考查數(shù)列的通項公式的求法,考查“錯位相減法”求數(shù)列的前n項和,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -i | C. | i | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知
是定義在
上的偶函數(shù),且在區(qū)間
上單調(diào)遞增,若實數(shù)
滿足
,則
的取值范圍是( )
A.
B.![]()
![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
函數(shù)
的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
設(shè)集合
,則
( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 168 | B. | 169 | C. | 170 | D. | 171 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com