已知函數(shù)f(x)=mx3+nx2的圖象在點(diǎn)(-1,2)處的切線恰好與直線3x+y=0平行.
(1)求函數(shù)f(x)在[-4,0]的值域;
(2)若f(x)在區(qū)間[t,t+1]上單調(diào)遞減,求實(shí)數(shù)t的取值范圍.
【答案】分析:(1)先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),又根據(jù)f'(-1)=-3,f(-1)=2可得到關(guān)于m,n的值,代入函數(shù)f(x)可得f'(x),然后研究函數(shù)在[-4,0]上的單調(diào)性,從而可求出函數(shù)的值域;
(2)根據(jù)(1)求f'(x)<0時(shí)x的取值區(qū)間,即為減區(qū)間,[t,t+1]為減區(qū)間的子集,從而解決問題.
解答:解:由已知條件得f'(x)=3mx2+2nx,
由f'(-1)=3,∴3m-2n=-3.
又f(-1)=2,∴-m+n=2,
∴m=1,n=3
∴f(x)=x3+3x2,∴f'(x)=3x2+6x.
(1)令f'(x)=3x2+6x=0解得x=0或x=-2
當(dāng)x∈[-4,-2]時(shí),f'(x)>0,當(dāng)x∈[-2,0]時(shí),f'(x)<0
∴f(x)max=f(-2)=4,f(-4)=-64+48=-16,f(0)=0
∴函數(shù)f(x)在[-4,0]的值域?yàn)閇-16,4]
(2)令f'(x)<0,即x2+2x<0,
函數(shù)f(x)的單調(diào)減區(qū)間是(-2,0).
∵f(x)在區(qū)間[t,t+1]上單調(diào)遞減,
則[t,t+1]?[-2,0]
∴實(shí)數(shù)t的取值范圍是[-2,-1].
點(diǎn)評(píng):本題主要考查通過求函數(shù)的導(dǎo)數(shù)來求函數(shù)增減區(qū)間的問題、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,同時(shí)考查了運(yùn)算求解的能力,屬于中檔題.