分析 ①l1與l2垂直時(shí),利用兩直線垂直的充要條件可判斷;
②對(duì)于直線l1與l2分別令x=0,y=0,即可知直線恒過定點(diǎn);
③在l1上任取點(diǎn)(x,ax+1),關(guān)于直線x+y=0對(duì)稱的點(diǎn)的坐標(biāo)為(-ax-1,-x),代入l2:x+ay+1=0的左邊,可得不為0,故可判斷;
④l1與l2平行,得到a2+1=0,不存在a的值,使l1與l2平行或重合.
解答 解:①a×1-1×a=0恒成立,l1與l2垂直恒成立,故①正確;
②直線l1:ax-y+1=0,當(dāng)a變化時(shí),x=0,y=1恒成立,所以l1經(jīng)過定點(diǎn)A(0,1),
l2:x+ay+1=0,當(dāng)a變化時(shí),y=0,x=-1恒成立,所以l2經(jīng)過定點(diǎn)B(-1,0),故②正確;
③在l1上任取點(diǎn)(x,ax+1),關(guān)于直線x+y=0對(duì)稱的點(diǎn)的坐標(biāo)為(-ax-1,-x),
代入l2:x+ay+1=0的左邊,顯然不為0,故③不正確;
④a2+1=0,不存在a的值,使l1與l2平行或重合故④正確.
故答案為:①②④
點(diǎn)評(píng) 本題以直線為載體,考查兩直線的位置關(guān)系,考查直線的對(duì)稱性,考查直線恒過定點(diǎn),考查軌跡,綜合性,需一一判斷.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{a}$+$\frac{1}$=$\frac{1}{c}$ | B. | $\frac{2}{a}$+$\frac{1}$=$\frac{3}{c}$ | C. | $\frac{2}{a}$+$\frac{2}$=$\frac{3}{c}$ | D. | $\frac{1}{a}$+$\frac{2}$=$\frac{2}{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{9}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=x | B. | y=$\frac{1}{x}$ | C. | y=-x3 | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com