【題目】下列說(shuō)法中,正確的序號(hào)是( )
①“b=2”是“1,b,4成等比數(shù)列”的充要條件;
②“雙曲線
與橢圓
有共同焦點(diǎn)”是真命題;
③若命題p∨¬q為假命題,則q為真命題;
④命題p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
【答案】B
【解析】
利用充要條件以及等比數(shù)列的性質(zhì)判斷①的正誤;雙曲線與橢圓的焦點(diǎn)坐標(biāo)判斷②的正誤;復(fù)合命題的真假判斷③的正誤;命題的否定形式判斷④的正誤.
解:①“b=2”可知“1,b,4成等比數(shù)列”,反之“1,b,4成等比數(shù)列”,則b=2或b=-2,所以“b=2”是“1,b,4成等比數(shù)列”的充分不必要條件;所以①不正確;
②“雙曲線
的焦點(diǎn)坐標(biāo)(±2,0);橢圓
的焦點(diǎn)坐標(biāo)(±2,0),所以橢圓與雙曲線有共同焦點(diǎn)”是真命題;所以②正確;
③若命題p∨¬q為假命題,p與¬q都是假命題,所以q為真命題;所以③正確;
④命題p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0,滿足命題的否定形式,所以④正確;
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,
底面
,
,
,
,
,點(diǎn)
為棱
的中點(diǎn).
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為
,過(guò)F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長(zhǎng)為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問(wèn)點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長(zhǎng)為2的菱形,
,
,平面
平面
,點(diǎn)
為棱
的中點(diǎn).
![]()
(Ⅰ)在棱
上是否存在一點(diǎn)
,使得
平面
,并說(shuō)明理由;
(Ⅱ)當(dāng)二面角
的余弦值為
時(shí),求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)已知橢圓
,直線
不過(guò)原點(diǎn)
且不平行于坐標(biāo)軸,
與
有兩個(gè)交點(diǎn)
,
,線段
的中點(diǎn)為
.
(Ⅰ)證明:直線
的斜率與
的斜率的乘積為定值;
(Ⅱ)若
過(guò)點(diǎn)
,延長(zhǎng)線段
與
交于點(diǎn)
,四邊形
能否為平行四邊形?若能,求此時(shí)
的斜率,若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,直線
:
.
(Ⅰ)設(shè)
是
圖象上一點(diǎn),
為原點(diǎn),直線
的斜率
,若
在
上存在極值,求
的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)
,使得直線
是曲線
的切線?若存在,求出
的值;若不存在,說(shuō)明理由;
(Ⅲ)試確定曲線
與直線
的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}滿足:a1=3,當(dāng)n≥2時(shí),an﹣1+an=4n;對(duì)于任意的正整數(shù)n,
.設(shè){bn}的前n項(xiàng)和為Sn.
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)求滿足13<Sn<14的n的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,PB⊥BC,PD⊥DC,且PC
.
![]()
(1)求證:PA⊥平面ABCD;
(2)求異面直線AC與PD所成角的余弦值;
(3)求二面角B﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
的極值;
(2)證明:
時(shí),![]()
(3)若函數(shù)
有且只有三個(gè)不同的零點(diǎn),分別記為
,設(shè)
且
的最大值是
,證明:![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com