欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.為節(jié)約用水,某市打算出臺(tái)一項(xiàng)水費(fèi)收費(fèi)措施,其中規(guī)定:每月每戶用水量不超過7噸時(shí),每噸水費(fèi)收基本價(jià)3元,若超過7噸而不超過11噸時(shí),超過部分水費(fèi)加收100%,若超過11噸而不超過15噸時(shí),超過部分的水費(fèi)加收200%,現(xiàn)在設(shè)某戶本月實(shí)際用水量為x(0≤x≤15)噸,應(yīng)交水費(fèi)為y元.
(1)試求出函數(shù)y=f(x)的解析式;
(2)如果一戶人家第一季度共交水費(fèi)126元,其中1月份用水9噸,2月份用水12噸,求該戶3月份的用水量.

分析 (1)分0≤x≤7、7<x≤11、11<x≤15三種情況討論即可;
(2)通過(1)分別計(jì)算出1、2月份所交水費(fèi),從而得出3月份所交水費(fèi),代入解析式計(jì)算即得結(jié)論.

解答 解:(1)當(dāng)0≤x≤7時(shí),f(x)=3x;
當(dāng)7<x≤11時(shí),f(x)=3×7+6(x-7)=6x-21;
當(dāng)11<x≤15時(shí),f(x)=3×7+6×(11-7)+9(x-11)=9x-54;
故y=f(x)=$\left\{\begin{array}{l}{3x,}&{0≤x≤7}\\{6x-21,}&{7<x≤11}\\{9x-54,}&{11<x≤15}\end{array}\right.$;
(2)由(1)可知,1月份交水費(fèi)6×9-21=33元,
2月份交水費(fèi)9×12-54=54元,
故3月份交水費(fèi)126-33-54=39元,
令3x=39,解得x=13,舍去,
令6x-21=39,解得x=10,
∴該戶3月份的用水量為10噸.

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,考查分析問題、解決問題的能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.2${\;}^{lo{g}_{\sqrt{2}}2}$-log${\;}_{(\sqrt{2}-1)}$(3-2$\sqrt{2}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3n+2n+1,則an=( 。
A.an=$\left\{\begin{array}{l}{6,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$B.an=2×3n-1
C.an=2×3n-1+2D.an=$\left\{\begin{array}{l}{6,n=1}\\{2×{3}^{n-1}+2,n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列敘述正確的是( 。
A.方程x2-2x+1=0的根構(gòu)成的集合為{1,1}
B.{x∈R|x2+1=0}={x∈R|$\left\{\begin{array}{l}{2x+4>0}\\{x+3<0}\end{array}\right.$}
C.集合M={(x,y)|x+y=5且2x-y=0}表示的集合是{2,3}
D.集合{1,2,3}與集合{3,2,1}是不同的集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+3,}&{a<0}\\{(3-a)x+2a,}&{x≥0}\end{array}\right.$,對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則a的取值范圍是(  )
A.(1,3)B.(1,2)C.[2,3)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列結(jié)論正確的是(  )
A.當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}≥2$
B.當(dāng)x$∈(0,\frac{π}{2}]$時(shí),sinx+$\frac{4}{sinx}$的最小值為4
C.當(dāng)x>0時(shí),$\sqrt{x}+\frac{1}{\sqrt{x}}$≥2
D.當(dāng)0<x≤2時(shí),x-$\frac{1}{x}$無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和Sn=($\frac{3}{2}$)n-1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)bn=log${\;}_{\frac{3}{2}}$(3an+1)時(shí),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)α∈R,f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R).
(1)證明對(duì)任意實(shí)數(shù)a,f(x)為增函數(shù).
(2)試確定a的值,使f(x)≤0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知P={x|x2-$\frac{3}{2}$x+$\frac{1}{2}$≤0},S={x|x2-(2a+1)x+a(a+1)≤0}
(1)否存在實(shí)數(shù)a,使x∈P是x∈S的充要條件,若存在,求出a的范圍;
(2)是否存在實(shí)數(shù)a,使x∈P是x∈S的必要不充分條件,若存在,求出a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案