欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,已知兩個正四棱錐P—AB—CD與Q—ABCD的高分別為1和2,AB=4.

(1)證明PQ⊥平面ABCD;

(2)求異面直線AQ和PB所成的角;

(3)求點P到平面QAD的距離.

(1)證明:取AD的中點M,連結(jié)PM、QM.

∵P—ABCD與Q—ABCD都是正四棱錐,

∴AD⊥PM,AD⊥QM.

    從而AD⊥平面PQM.

    又PQ平面PQM,

∴PQ⊥AD.

    同理,PQ⊥AB,

∴PQ⊥平面ABCD.

(2)解:連結(jié)AC、BC.

    設(shè)AC∩BD=O,由PQ⊥平面ABCD及正四棱錐的性質(zhì)可知O在PQ上,

    從而P、A、Q、C四點共面.

    取OC的中點N,連結(jié)PN.

,

.

    從而AQ∥PN,∠BPN(或其補角)是異面直線AQ與PB所成的角.

    連結(jié)BN.

∵PB==3,

PN=,

BN=,

∴cosBPN=.

    從而異面直線AQ與PB所成的角是arccos.

(3)解:由(1)知,AD⊥平面PQM,

∴平面QAD⊥平面PQM.

    過P作PH⊥QM于H,則PH⊥平面QAD.

∴PH的長為點P到平面QAD的距離.

    連結(jié)OM,

∵OM=AB=2=OQ,

∴∠MQP=45°.

    又PQ=PO+QO=3,

    于是PH=PQsin45°=,

    即點P到平面QAD的距離是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們將底面是正方形,側(cè)棱長都相等的棱錐稱為正四棱錐.已知由兩個完全相同的正四棱錐組合而成的空間幾何體的正視圖、側(cè)視圖、俯視圖都相同,且如圖所示,視圖中四邊形ABCD是邊長為1的正方形,則該幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)二模)如圖,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求異面直線B1C與A1C1所成角的大。唬ㄓ梅慈呛瘮(shù)形式表示)
(2)若E是線段DD1上(不包含線段的兩端點)的一個動點,請?zhí)岢鲆粋與三棱錐體積有關(guān)的數(shù)學(xué)問題(注:三棱錐需以點E和已知正四棱柱八個頂點中的三個為頂點構(gòu)成);并解答所提出的問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求異面直線B1C與A1C1所成角的大;(用反三角函數(shù)形式表示)
(2)若E是線段DD1上(不包含線段的兩端點)的一個動點,請?zhí)岢鲆粋與三棱錐體積有關(guān)的數(shù)學(xué)問題(注:三棱錐需以點E和已知正四棱柱八個頂點中的三個為頂點構(gòu)成);并解答所提出的問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

我們將底面是正方形,側(cè)棱長都相等的棱錐稱為正四棱錐.已知由兩個完全相同的正四棱錐組合而成的空間幾何體的正視圖、側(cè)視圖、俯視圖都相同,且如圖所示,視圖中四邊形ABCD是邊長為1的正方形,則該幾何體的體積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求異面直線B1C與A1C1所成角的大;(用反三角函數(shù)形式表示)
(2)若E是線段DD1上(不包含線段的兩端點)的一個動點,請?zhí)岢鲆粋與三棱錐體積有關(guān)的數(shù)學(xué)問題(注:三棱錐需以點E和已知正四棱柱八個頂點中的三個為頂點構(gòu)成);并解答所提出的問題.

查看答案和解析>>

同步練習(xí)冊答案