【題目】已知公差不為零的等差數(shù)列{an}中,a1=1,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
+n,求數(shù)列Sn的前Sn項(xiàng)和Sn .
【答案】
(1)解:設(shè)數(shù)列{an}公差為d,
∵a1,a3,a9成等比數(shù)列,
∴
,
∴(1+2d)2=1×(1+8d).
∴d=0(舍)或d=1,
∴an=n
(2)解:令
Sn=b1+b2+b3+…+bn=(21+1)+(22+1)+(23+1)+…+(2n+1)
=(21+22+…+2n)+(1+2+3+…+n)
=
=
,
![]()
【解析】(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.(2)利用等差數(shù)列與等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握通項(xiàng)公式:
或
;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
為常數(shù)),函數(shù)
,(
為常數(shù),且
).
(1)若函數(shù)
有且只有1個(gè)零點(diǎn),求
的取值的集合.
(2)當(dāng)(1)中的
取最大值時(shí),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)討論
的單調(diào)性;
(2)若直線
與曲線
都只有兩個(gè)交點(diǎn),證明:這四個(gè)交點(diǎn)可以構(gòu)成一個(gè)平行四邊形,并計(jì)算該平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)證明:a,b,c成等比數(shù)列;
(Ⅱ)若角B的平分線BD交AC于點(diǎn)D,且b=6,S△BAD=2S△BCD , 求BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)個(gè)人月收入在5000元以內(nèi)的個(gè)人所得稅檔次為(單位:元):![]()
設(shè)某人的月收入為x元,試編一段程序,計(jì)算他應(yīng)交的個(gè)人所得稅.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
是梯形,四邊形
是矩形,且平面
平面
,
,
,
,
是線段
上的動(dòng)點(diǎn).
![]()
(1)試確定點(diǎn)
的位置,使
平面
,并說(shuō)明理由;
(2)在(1)的條件下,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com