欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.設(shè)函數(shù)y=f(x)在R上有定義,對(duì)于任一給定的正數(shù)p,定義函數(shù)fp(x)=$\left\{\begin{array}{l}{f(x),f(x)≤p}\\{p,f(x)>p}\end{array}\right.$,則稱函數(shù)fp(x)為f(x)的“p界函數(shù)”若給定函數(shù)f(x)=x2-2x-1,p=2,則下列結(jié)論不成立的是( 。
A.fp[f(0)]=f[fp(0)]B.fp[f(1)]=f[fp(1)]C.fp[fp(2)]=f[f(2)]D.fp[f(3)]=f[f(3)]

分析 由于函數(shù)f(x)=x2-2x-1,p=2,求出f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x>3或x<-1}\end{array}\right.$,再對(duì)選項(xiàng)一一加以判斷,即可得到答案.

解答 解:∵函數(shù)f(x)=x2-2x-1,p=2,
∴f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x>3或x<-1}\end{array}\right.$,
∴A.fp[f(0)]=f2(-1)=2,f[fp(0)]=f(-1)=1+2-1=2,故A成立;
B.fp[f(1)]=f2(-2)=2,f[fp(1)]=f(-2)=4+4-1=7,故B不成立;
C.f[f(2)]=f(-1)=2,fp[fp(2)]=f2(-1)=2,故C成立;
D.f[f(3)]=f(2)=-1,fp[fp(3)]=f2(2)=-1,故D成立.
故選:B.

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查分段函數(shù)的運(yùn)用:求函數(shù)值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=asinx+bcosx(a,b為常數(shù),a≠0)在x=$\frac{π}{4}$處取得最小值,則函數(shù)$g(x)=f({\frac{3π}{4}-x})$是( 。
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)$({\frac{3π}{2},0})$對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)$({\frac{3π}{2},0})$對(duì)稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某地?cái)M建一座長(zhǎng)為640米的大橋AB,假設(shè)橋墩等距離分布,經(jīng)設(shè)計(jì)部門測(cè)算,兩端橋墩A、B造價(jià)總共為100萬(wàn)元,當(dāng)相鄰兩個(gè)橋墩的距離為x米時(shí)(其中64<x<100),中間每個(gè)橋墩的平均造價(jià)為$\frac{80}{3}\sqrt{x}$萬(wàn)元,橋面每1米長(zhǎng)的平均造價(jià)為(2+$\frac{x\sqrt{x}}{640}$)萬(wàn)元.
(1)試將橋的總造價(jià)表示為x的函數(shù)f(x);
(2)為使橋的總造價(jià)最低,試問(wèn)這座大橋中間(兩端橋墩A、B除外)應(yīng)建多少個(gè)橋墩?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知實(shí)數(shù)x,y滿足有不等式組$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,則實(shí)數(shù)a的值是( 。
A.2B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示
(Ⅰ)求函數(shù)f(x)的解析式
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,其中a<c,f(A)=$\frac{1}{2}$,且a=$\sqrt{7}$,b=$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.要得到函數(shù)y=cosx的圖象,只需將函數(shù)$y=sin(2x+\frac{π}{3})$的圖象上所有的點(diǎn)的(  )
A.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
B.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
D.橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,B=$\frac{π}{3}$.
(1)若b=3,2sinA=sinC,求a,c;
(2)若sinAsinC=$\frac{1}{2}$,且△ABC的面積為2$\sqrt{3}$,求b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{lnx}$+ax,x>1.
(Ⅰ)若f(x)在(1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若a=2,求函數(shù)f(x)的極小值;
(Ⅲ)若存在實(shí)數(shù)a使f(x)在區(qū)間(${e^{\frac{1}{n}}},{e^n}$)(n∈N*,且n>1)上有兩個(gè)不同的極值點(diǎn),求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知三棱柱ABC-A1B1C1,O、O1為棱AB、A1B1的中點(diǎn),OC1=O1C,且CB=CC1=CA.
(1)證明:平面ABB1A1⊥平面C1COO1;
(2)若OB1=OA1,∠CBA=30°,求二面角C1-OB1-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案