| A. | fp[f(0)]=f[fp(0)] | B. | fp[f(1)]=f[fp(1)] | C. | fp[fp(2)]=f[f(2)] | D. | fp[f(3)]=f[f(3)] |
分析 由于函數(shù)f(x)=x2-2x-1,p=2,求出f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x>3或x<-1}\end{array}\right.$,再對(duì)選項(xiàng)一一加以判斷,即可得到答案.
解答 解:∵函數(shù)f(x)=x2-2x-1,p=2,
∴f2(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,-1≤x≤3}\\{2,x>3或x<-1}\end{array}\right.$,
∴A.fp[f(0)]=f2(-1)=2,f[fp(0)]=f(-1)=1+2-1=2,故A成立;
B.fp[f(1)]=f2(-2)=2,f[fp(1)]=f(-2)=4+4-1=7,故B不成立;
C.f[f(2)]=f(-1)=2,fp[fp(2)]=f2(-1)=2,故C成立;
D.f[f(3)]=f(2)=-1,fp[fp(3)]=f2(2)=-1,故D成立.
故選:B.
點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查分段函數(shù)的運(yùn)用:求函數(shù)值,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱 | |
| B. | 偶函數(shù)且它的圖象關(guān)于點(diǎn)$({\frac{3π}{2},0})$對(duì)稱 | |
| C. | 奇函數(shù)且它的圖象關(guān)于點(diǎn)$({\frac{3π}{2},0})$對(duì)稱 | |
| D. | 奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | |
| B. | 橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | |
| C. | 橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | |
| D. | 橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com