分析 由題意四棱錐P-ABCD的五個頂點位于同一個正方體的頂點處,且與該正方體內(nèi)接于同一個球.由此結(jié)合題意,可得正文體的棱長為2,算出外接球半徑R,再結(jié)合球的體積公式,即可得到該球體積.
解答
解:由題意四棱錐P-ABCD的五個頂點位于同一個正方體的頂點處,且與該正方體內(nèi)接于同一個球.
設(shè)外接球的球心為O,則O也是正方體的中心,設(shè)EF中點為G,連接OG,OA,AG
根據(jù)題意,直線EF被球面所截得的線段長為2$\sqrt{2}$,即正方體面對角線長也是2$\sqrt{2}$,
∴得AG=$\sqrt{2}$=$\frac{\sqrt{2}}{2}$a,∴正方體棱長a=2
∴Rt△OGA中,OG=$\frac{1}{2}$a=1,AO=$\sqrt{3}$,
即外接球半徑R=$\sqrt{3}$,得外接球的體積為$\frac{4}{3}$πR3=4$\sqrt{3}$π.
故答案為:4$\sqrt{3}$π.
點評 本題主要考查求外接球的體積,著重考查了正方體的性質(zhì)、三視圖和球內(nèi)接多面體等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,1.25) | B. | (1.25,1.5) | C. | (1.5,2) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com