【題目】南北朝時(shí)代的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為
,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面的面積分別為
,則“
總相等”是“
相等”的( )
![]()
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
,其中
.若
恒成立,則當(dāng)
取得最小值時(shí),
的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,
,
,O為線段CD的中點(diǎn),將
沿BO折到
的位置,使得
,E為
的中點(diǎn).
![]()
(1)求證:
;
(2)求直線AE與平面
所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱
中,側(cè)面
為菱形,
,
,側(cè)面
為正方形,平面
平面
.點(diǎn)
為線段
的中點(diǎn),點(diǎn)
在線段
上,且
.
![]()
(1)證明:平面
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某外國(guó)語(yǔ)學(xué)校舉行的
(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為
,且成績(jī)分布在
,分?jǐn)?shù)在
以上(含
)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取
人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.
![]()
(Ⅰ)求
的值,并計(jì)算所抽取樣本的平均值
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)填寫(xiě)下面的
列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)
的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.
女生 | 男生 | 總計(jì) | |
獲獎(jiǎng) |
| ||
不獲獎(jiǎng) | |||
總計(jì) |
| ||
附表及公式:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的3月12日是植樹(shù)節(jié),某公司為了動(dòng)員職工積極參加植樹(shù)造林,在植樹(shù)節(jié)期間開(kāi)展植樹(shù)有獎(jiǎng)活動(dòng),設(shè)有甲、乙兩個(gè)摸獎(jiǎng)箱,每位植樹(shù)者植樹(shù)每滿30棵獲得一次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),植樹(shù)每滿50棵獲得一次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì),每箱內(nèi)各有10個(gè)球(這些球除顏色外全相同),甲箱內(nèi)有紅、黃、黑三種顏色的球,其中
個(gè)紅球,
個(gè)黃球,5個(gè)黑球,乙箱內(nèi)有4個(gè)紅球和6個(gè)黃球,每次摸一個(gè)球后放回原箱,摸得紅球獎(jiǎng)100元,黃球獎(jiǎng)50元,摸得黑球則沒(méi)有獎(jiǎng)金.
(1)經(jīng)統(tǒng)計(jì),每人的植樹(shù)棵數(shù)
服從正態(tài)分布
,若其中有200位植樹(shù)者參與了抽獎(jiǎng),請(qǐng)估計(jì)植樹(shù)的棵數(shù)
在區(qū)間
內(nèi)并中獎(jiǎng)的人數(shù)(結(jié)果四舍五入取整數(shù));
附:若
,則
,
.
(2)若
,某位植樹(shù)者獲得兩次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求中獎(jiǎng)金額
(單位:元)的分布列;
(3)某人植樹(shù)100棵,有兩種摸獎(jiǎng)方法,
方法一:三次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì);
方法二:兩次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì);
請(qǐng)問(wèn):這位植樹(shù)者選哪一種方法所得獎(jiǎng)金的期望值較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)
的直線l與拋物線
交于A,B兩點(diǎn),以AB為直徑作圓,記為
,
與拋物線C的準(zhǔn)線始終相切.
(1)求拋物線C的方程;
(2)過(guò)圓心M作x軸垂線與拋物線相交于點(diǎn)N,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在定義域上單調(diào)增,求
的取值范圍;
(3)若函數(shù)
在定義域上不單調(diào),試判定
的零點(diǎn)個(gè)數(shù),并給出證明過(guò)程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體
中,
是
的中點(diǎn),點(diǎn)
是
上一點(diǎn),
,
,
.動(dòng)點(diǎn)
在上底面
上,且滿足三棱錐
的體積等于1,則直線
與
所成角的正切值的最大值為( )
![]()
A.
B.
C.
D.2
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com