分析 (1)由BD是AC邊上的高,得出BD⊥CD,BD⊥PD,由此證明BD⊥平面PCD,即可證明PE⊥BD;
(2)連接BE,交DM與點(diǎn)F,由PE∥平面DMN,得出PE∥NF,證明△DEF是等邊三角形,再利用直角三角形的邊角關(guān)系求出$\frac{DE}{DC}$的值即可.
解答
解:(1)∵BD是AC邊上的高,
∴BD⊥CD,BD⊥PD,
又PD∩CD=D,
∴BD⊥平面PCD,
又PE?平面PCD中,
∴BD⊥PE,即PE⊥BD;
(2)如圖所示,
連接BE,交DM與點(diǎn)F,
∵PE∥平面DMN,
∴PE∥NF,
又點(diǎn)N為PB中點(diǎn),
∴點(diǎn)F為BE的中點(diǎn);
∴DF=$\frac{1}{2}$BE=EF;
又∠BCD=90°-60°=30°,
∴△DEF是等邊三角形,
設(shè)DE=a,則BD=$\sqrt{3}$a,DC=$\sqrt{3}$BD=3a;
∴$\frac{DE}{DC}$=$\frac{a}{3a}$=$\frac{1}{3}$.
點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了空間想象能力與邏輯推理能力的應(yīng)用問題,是綜合性題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①③ | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-2,-1) | B. | (-2,+∞) | C. | (-∞,-1) | D. | (-∞,-2)∪(-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①和② | B. | ②和③ | C. | ②和④ | D. | ③和④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{5}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com