欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知{an}是等差數(shù)列,Sn是其前n項(xiàng)和,
(1)a2=-1,S15=75,求an與Sn;
(2)a1+a2+a3+a4=124,an+an-1+an-2+an-3=156,Sn=210,求項(xiàng)數(shù)n.

分析 (1)利用等差數(shù)列前n項(xiàng)和公式和通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出an與Sn
(2)利用等差數(shù)列的通項(xiàng)公式得4(a1+an)=(a1+a2+a3+a4+an+an-1+an-2+an-3),從而求出a1+an=70,由此能求出項(xiàng)數(shù)n.

解答 解:(1)∵{an}是等差數(shù)列,Sn是其前n項(xiàng)和,a2=-1,S15=75,
∴$\left\{\begin{array}{l}{{a}_{2}={a}_{1}+d=-1}\\{{S}_{15}=15{a}_{1}+\frac{15×14}{2}d=75}\end{array}\right.$,
解得a1=-2,d=1,
∴an=-2+(n-1)×1=n-3.
Sn=$-2n+\frac{n(n-1)}{2}×1$=$\frac{{n}^{2}-5n}{2}$.
(2)∵{an}是等差數(shù)列,Sn是其前n項(xiàng)和,
a1+a2+a3+a4=124,an+an-1+an-2+an-3=156,Sn=210,
∴4(a1+an)=(a1+a2+a3+a4+an+an-1+an-2+an-3)=124+156=280,
∴a1+an=70,
∴${S}_{n}=\frac{n}{2}({a}_{1}+{a}_{n})$=$\frac{n}{2}×70=210$,
解得n=6.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的求法,考查等差數(shù)列的項(xiàng)數(shù)n的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若對(duì)?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.直線l與曲線y=ex相切于點(diǎn)A(0,1),直線l的方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠BAC=30°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求FC與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知D,E是△ABC邊BC的三等分點(diǎn),點(diǎn)P在線段DE上,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則xy的取值范圍是( 。
A.[$\frac{1}{9}$,$\frac{4}{9}$]B.[$\frac{1}{9}$,$\frac{1}{4}$]C.[$\frac{2}{9}$,$\frac{1}{2}$]D.[$\frac{2}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的首項(xiàng)為a1(a1≠0),公差為d,且不等式a1x2-3x+2<0的解集為(1,d)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn-an=$\frac{1}{{n}^{2}+n}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系xoy中,已知圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=5-2t}\\{y=3-t}\end{array}}\right.$(t為參數(shù)),定點(diǎn)P(1,1).
(Ⅰ)以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,單位長(zhǎng)度與平面直角坐標(biāo)系下的單位長(zhǎng)度相同建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(Ⅱ)已知直線l與圓C相交于A,B兩點(diǎn),求||PA|-|PB||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知A,B分別為橢圓C:$\frac{x^2}{4}+\frac{y^2}{2}=1$的左、右頂點(diǎn),P為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),直線PA,PB的斜率分別記為k1,k2
(1)求k1k2;
(2)過(guò)坐標(biāo)原點(diǎn)O作與直線PA,PB平行的兩條射線分別交橢圓C于點(diǎn)M,N,問(wèn):△MON的面積是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某保險(xiǎn)公司針對(duì)企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬(wàn)元.保險(xiǎn)公司把職工從事的所有崗位共分為A、B、C三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).
工種類別ABC
賠付頻率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤(rùn)都不得超過(guò)保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購(gòu)買(mǎi)一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類保險(xiǎn)上限購(gòu)買(mǎi),試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案