【題目】如圖,已知拋物線
.點(diǎn)A
,拋物線上的點(diǎn)P(x,y)
,過點(diǎn)B作直線AP的垂線,垂足為Q
![]()
(I)求直線AP斜率的取值范圍;
(II)求
的最大值
【答案】(I)(-1,1);(II)
.
【解析】
試題本題主要考查直線方程、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和運(yùn)算求解能力。滿分15分。
(Ⅰ)由斜率公式可得AP的斜率為
,再由
,得直線AP的斜率的取值范圍;(Ⅱ)聯(lián)立直線AP與BQ的方程,得Q的橫坐標(biāo),進(jìn)而表達(dá)
與
的長(zhǎng)度,通過函數(shù)
求解
的最大值.
試題解析:
(Ⅰ)設(shè)直線AP的斜率為k,
,
因?yàn)?/span>
,所以直線AP斜率的取值范圍是
.
(Ⅱ)聯(lián)立直線AP與BQ的方程
![]()
解得點(diǎn)Q的橫坐標(biāo)是
.
因?yàn)閨PA|=
=
,
|PQ|=
,
所以
.
令
,
因?yàn)?/span>
,
所以 f(k)在區(qū)間
上單調(diào)遞增,
上單調(diào)遞減,
因此當(dāng)k=
時(shí),
取得最大值
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義在
上的函數(shù)
,如果存在兩條平行直線
與![]()
,使得對(duì)于任意
,都有
恒成立,那么稱函數(shù)
是帶狀函數(shù),若
,
之間的最小距離
存在,則稱
為帶寬.
(1)判斷函數(shù)
是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;
(2)求證:函數(shù)
(
)是帶狀函數(shù);
(3)求證:函數(shù)
(
)為帶狀函數(shù)的充要條件是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
,
,若函數(shù)
有4個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)營(yíng)銷人員進(jìn)行某商品M市場(chǎng)營(yíng)銷調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計(jì)得到以下表:
反饋點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0. 5 | 0. 6 | 1 | 1. 4 | 1. 7 |
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量
(百件)與返還點(diǎn)數(shù)
之間的相關(guān)關(guān)系. 請(qǐng)用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷量;
(2)若節(jié)日期間營(yíng)銷部對(duì)商品進(jìn)行新一輪調(diào)整. 已知某地?cái)M購(gòu)買該商品的消費(fèi)群體十分龐大,經(jīng)營(yíng)銷調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間(百分比) |
|
|
|
|
|
|
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(。┣筮@200位擬購(gòu)買該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值
的樣本平均數(shù)及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到0. 1);
(ⅱ)將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在
和
的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取2名進(jìn)行跟蹤調(diào)查,設(shè)抽出的2人中,至少有一個(gè)人是“欲望膨脹型”消費(fèi)者的概率是多少?
參考公式及數(shù)據(jù):①
,
;②
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為
為參數(shù)), 橢圓C的參數(shù)方程為
為參數(shù))。在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(2, ![]()
(1)求橢圓C的直角坐標(biāo)方程和點(diǎn)A在直角坐標(biāo)系下的坐標(biāo)
(2)直線l與橢圓C交于P,Q兩點(diǎn),求△APQ的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的表達(dá)式;
(2)若f(x)>a在x∈[﹣1,1]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,
是等腰直角三角形,
,D,E分別是AC,AB上的點(diǎn),
,將
沿DE折起,得到如圖2所示的四棱錐
,使得
.
![]()
圖1 圖2
(1)證明:平面
平面BCD;
(2)求
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
,對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)
為曲線
上的動(dòng)點(diǎn),點(diǎn)
在線段
上,且滿足
,求點(diǎn)
的軌跡
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
的極坐標(biāo)為
,點(diǎn)
在曲線
上,求
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com