| A. | [$\frac{3}{4}$,1) | B. | [$\frac{1}{8}$,$\frac{\sqrt{3}}{6}$) | C. | [$\frac{3}{16}$,$\frac{1}{2}$) | D. | [$\frac{3}{8}$,3) |
分析 作出f(x)的圖象,以及直線(xiàn)y=t,方程f(x)=t有兩個(gè)不等的實(shí)根,即為直線(xiàn)y=t和y=f(x)的圖象有兩個(gè)交點(diǎn),分別求得x1,x2的范圍,由不等式的性質(zhì),即可得到所求范圍.
解答
解:函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,
作出f(x)的圖象,以及直線(xiàn)y=t,
方程f(x)=t有兩個(gè)不等的實(shí)根,即為
直線(xiàn)y=t和y=f(x)的圖象有兩個(gè)交點(diǎn),
由x+$\frac{1}{2}$=$\frac{3}{4}$,可得x=$\frac{1}{4}$,
由1=3x2,可得x=$\frac{\sqrt{3}}{3}$(負(fù)的舍去),
即有$\frac{1}{4}$≤x1<$\frac{1}{2}$,$\frac{1}{2}$≤x2≤$\frac{\sqrt{3}}{3}$,即$\frac{1}{4}$≤x22≤$\frac{1}{3}$,
則x1•f(x2)=3x1•x22∈[$\frac{3}{16}$,$\frac{1}{2}$).
故選C.
點(diǎn)評(píng) 本題考查函數(shù)和方程的轉(zhuǎn)化思想,考查數(shù)形結(jié)合的思想方法,同時(shí)考查不等式的性質(zhì)和運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2-2i | B. | 2+2i | C. | 1-2i | D. | 1+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {-1,0} | B. | {0,1} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| 家庭人數(shù) | 1 | 2 | 3 | 4 | 5 |
| 家庭數(shù)量 | 6 | m | 72 | 18 | |
| 抽樣數(shù)量 | 4 | n | 10 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com