欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.A,B兩點(diǎn)到平面α的距離分別是3,5,M是AB的中點(diǎn),則M到平面α的距離是4或1.

分析 由于A,B的位置可在同側(cè)與異側(cè),故需要討論.考慮兩種情況:當(dāng)A、B兩點(diǎn)有平面α的同側(cè)時(shí),當(dāng)A、B兩點(diǎn)有平面α的異側(cè)時(shí),分別利用平面幾何的知識(shí)求得M到平面α的距離即可.

解答 解:考慮兩種情況:
當(dāng)A、B兩點(diǎn)有平面α的同側(cè)時(shí),如圖,
點(diǎn)M到平面α的距離為4;
當(dāng)A、B兩點(diǎn)有平面α的異側(cè)時(shí),如圖,
點(diǎn)M到平面α的距離為1;
則點(diǎn)M到平面α的距離為4或1
故答案為:4或1.

點(diǎn)評(píng) 本題以點(diǎn)面距離為載體,主要考查點(diǎn)、線、面間的距離計(jì)算等基礎(chǔ)知識(shí),考查空間想象力和分類討論思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知在△ABC中,角A、B、C所對(duì)應(yīng)的邊為a,b,c.
(I)若sin(A+$\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$cosA,求A的值;
(Ⅱ)若cosA=$\frac{1}{3}$,b=3c,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且圖象過(guò)點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$),函數(shù)g(x)=f(x)f(x-$\frac{π}{4}$)的單調(diào)遞增區(qū)間[$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一長(zhǎng)方體的長(zhǎng),寬,高分別為3$\sqrt{2}$cm,4$\sqrt{2}$cm,5$\sqrt{2}$cm,則該長(zhǎng)方體的外接球的體積是( 。
A.$\frac{100π}{3}$cm3B.$\frac{208π}{3}$cm3C.$\frac{500π}{3}$cm3D.$\frac{416\sqrt{3}π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知命題p:方程$\frac{x^2}{k}+\frac{y^2}{4-k}=1$表示焦點(diǎn)在x軸上的橢圓,命題q:方程(k-1)x2+(k-3)y2=1表示雙曲線.若p∨q為真,p∧q為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.到直線4x+3y-5=0的距離為1的點(diǎn)的軌跡方程為4x+3y=0或4x+3y-10=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.滿足A⊆{1,2,3,4},且A∩{2,3,4}={ 3,4}的集合A的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$f(x)=\frac{{2{{cos}^3}x+2{{sin}^2}(2π-x)+sin(\frac{π}{2}+x)-3}}{{2+2{{sin}^2}(\frac{π}{2}+x)-sin(\frac{3π}{2}-x)}}$,則$f(\frac{π}{3})$=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD中,BC=CD,AB=AD=$\sqrt{2}$,AB⊥AD,O為BD的中點(diǎn),PO⊥平面ABCD,平面PAB⊥平面PBC,設(shè)OC=a,PO=b.
(Ⅰ)若a=$\frac{1}{3}$,求b的值;
(Ⅱ)當(dāng)$\frac{a}$取得最大值時(shí),求PC與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案