| A. | x2-2x | B. | x2-4x+1 | C. | $\frac{{x}^{2}}{4}-\frac{3}{2}x+\frac{5}{4}$ | D. | $\frac{{x}^{2}}{4}-\frac{3}{2}x$ |
分析 利用換元法,令t=2x+1,則x=$\frac{1}{2}(t-1)$,從而化簡可得f(t)=$(\frac{1}{2}t-\frac{1}{2})^{2}-2(\frac{1}{2}t-\frac{1}{2})$,化簡即可得到f(x).
解答 解:由題意:函數(shù)f(2x+1)=x2-2x;
令t=2x+1,則x=$\frac{1}{2}(t-1)$,那么:f(t)=$(\frac{1}{2}t-\frac{1}{2})^{2}-2(\frac{1}{2}t-\frac{1}{2})$,
化簡得:f(t)=$\frac{1}{4}{t}^{2}-\frac{3}{2}t+\frac{5}{4}$
所以:f(x)=$\frac{{x}^{2}}{4}-\frac{3}{2}x+\frac{5}{4}$
故選C
點評 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2x-y+1=0 | B. | x-y-4=0 | C. | x+y-2=0 | D. | x+y-4=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2) | B. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1) | C. | (-∞,1) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {2,4} | B. | {0,1,3,5} | C. | {1,3,5,6} | D. | {x∈N*|x≤6} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com