分析 先求出A、B兩點連線所在直線斜率,由此能求出直線PQ的傾斜角的取值范圍.
解答 解:∵點A(cosθ,sin2θ)和點B(0,1)是兩個相異點,
∴kAB=$\frac{1-si{n}^{2}θ}{0-cosθ}$=-cosθ,
∵θ≠nπ+$\frac{π}{2}$,
∴直線AB斜率為在[-1,0)∪(0,1],
設傾斜角為α,則tanα∈[-1,0)∪(0,1],
∴α∈(0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).
故答案是:$(0,\frac{π}{4}]∪[\frac{3π}{4},π)$;
點評 本題考查直線的傾斜角的取值范圍的求法,是基礎題,解題時要認真審題,注意斜率公式的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [$2\sqrt{5}$,+∞) | B. | [$\frac{9}{2}$,+∞) | C. | [$\frac{14}{3}$,+∞) | D. | (-∞,$2\sqrt{5}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ①和②均為真命題 | B. | ①和②均為假命題 | ||
| C. | ①為真命題,②為假命題 | D. | ①為假命題,②為真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{3}$ | C. | x=$\frac{π}{12}$ | D. | x=$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com