【題目】如圖所示,面積為
的平面凸四邊形的第
條邊的邊長記為
,此四邊形內(nèi)任一點(diǎn)
到第
條邊的距離記為
,若
,則
.類比以上性質(zhì),體積為
的三棱錐的第
個(gè)面的面積記為
,此三棱錐內(nèi)任一點(diǎn)
到第
個(gè)面的距離記為
,若
,則
等于( 。
![]()
A.
B.
C.
D. ![]()
【答案】D
【解析】
平面凸四邊形中的結(jié)論是根據(jù)等面積法得到,類比以上性質(zhì),在三棱錐中根據(jù)等體積法求解
的值.
解:面積為
的平面凸四邊形的第
條邊的邊長記為
,
此四邊形內(nèi)任一點(diǎn)
到第
條邊的距離記為
,
所以由等面積法得,
,
因?yàn)?/span>
,
,
所以
,
即
,
故在平面凸四邊形中,求解此結(jié)論的過程中運(yùn)用了等面積法求解,
類比上述性質(zhì),在三棱錐中,則應(yīng)使用等體積法求解,
三棱錐的體積為
,
因?yàn)轶w積為
的三棱錐的第
個(gè)面的面積記為
,此三棱錐內(nèi)任一點(diǎn)
到第
個(gè)面的距離記為
,
由等體積法有,
,
,
因?yàn)?/span>
,
所以
,
所以
,
即
,
故選D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若在
上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐
,底面
為菱形,
,
,
平面
,
分別是
的中點(diǎn)。
![]()
(1)證明:
;
(2)若
為
上的動(dòng)點(diǎn),
與平面
所成最大角的正切值為
,求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)
.
(1)求
的方程;
(2)是否存在直線
與
相交于
兩點(diǎn),且滿足:①
與
(
為坐標(biāo)原點(diǎn))的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)![]()
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角
中,若
,且能蓋住
的最小圓的面積為
,求
周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載的“芻甍”(chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體
是一個(gè)芻甍,其中
是正三角形,
,則以下兩個(gè)結(jié)論:①
;②
,( )
![]()
A.①和②都不成立B.①成立,但②不成立
C.①不成立,但②成立D.①和②都成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為鈍角α的角形耕地,其中
.在該塊土地中
處有一小型建筑,經(jīng)測量,它到公路
、
的距離
、
分別為
,
.現(xiàn)要過點(diǎn)
修建一條直線公路
,將三條公路圍成的區(qū)域
建成一個(gè)工業(yè)園.設(shè)
,![]()
,其中
.
![]()
(1)試建立
間的等量關(guān)系;
(2)為盡量減少耕地占用,問如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰梯形
中,
,
是
的中點(diǎn).將
沿
折起后如圖2,使二面角
成直二面角,設(shè)
是
的中點(diǎn),
是棱
的中
點(diǎn).
![]()
(1)求證:
;
(2)求證:平面
平面
;
(3)判斷
能否垂直于平面
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y與投資x成正比,其關(guān)系如圖甲,B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,其關(guān)系如圖乙
注:利潤與投資單位為萬元
分別將A,B兩種產(chǎn)品的利潤y表示為投資x的函數(shù)關(guān)系式;
該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn)
問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少萬元?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com