欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.某市5年中的煤氣消耗量與使用煤氣戶數(shù)的歷史資料如下:
年份20062007200820092010
x用戶(萬戶)11.11.51.61.8
y(萬立方米)6791112
(1)檢驗是否線性相關;
(2)求回歸方程;
(3)若市政府下一步再擴大兩千煤氣用戶,試預測該市煤氣消耗量將達到多少?
(  $b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)\;({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x}\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}a=\overline y-b\overline x$)

分析 (1)作出散點圖,觀察呈線性即可判斷.
(2)利用公式求出$\hat$,$\hat{a}$,即可得出結論.
(3)增加2千,可得x=2,代入計算即可.

解答 解:(1)作出散點圖(如圖),觀察呈線性正相關.
(2)$\overline{x}$=$\frac{1+1.1+1.5+1.6+1.8}{5}$=$\frac{7}{5}$,
$\overline{y}$=$\frac{6+7+9+11+12}{5}$=9,
$\sum_{i=1}^{5}{x}_{i}^{2}$=12+1.12+1.52+1.62+1.82=10.26,
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1×6+1.1×7+1.5×9+1.6×11+1.8×12=66.4,
∴$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$=$\frac{66.4-5×9×\frac{7}{5}}{10.26-5×\frac{49}{25}}$=$\frac{170}{23}$,
則$\widehat{a}$=$\overline{y}$-b$\overline{x}$=9-$\frac{170}{23}$×$\frac{7}{5}$=-$\frac{31}{23}$,
∴回歸方程為y=$\frac{170}{23}$x-$\frac{31}{23}$.
(3)當x=1.8+0.2=2時,
代入得y=$\frac{170}{23}$×2-$\frac{31}{23}$=$\frac{309}{23}$≈13.4.
∴煤氣量約達13.4萬立方米.

點評 本題考查了線性回歸方程的求法及應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知EA⊥平面ABC,F(xiàn)C⊥平面ABC,△ABC是正三角形,D是BC的中點,且AB=AE=1,CF=2.
(1)求證:AD⊥平面BCF;
(2)求直線DF與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=ax2-(a+2)x+lnx.若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,則a的取值范圍為[0,8].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.就實數(shù)a的取值范圍,討論關于x的函數(shù)y=cos2x+2sinx+2a-3,x∈[0,2π]與x軸的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知ω>0,函數(shù)f(x)=sinωx在區(qū)間$[{-\frac{π}{4},\frac{π}{4}}]$上恰有9個零點,則ω的取值范圍是( 。
A.16≤ω<20B.16≤ω≤20C.16≤ω<18D.16≤ω≤18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知曲線y=2x2+1過點(1,3),則該曲線在該點處的切線方程為(  )
A.y=-4x-1B.y=4x-1C.y=4x-11D.y=-4x+7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若sin(θ+$\frac{π}{3}$)=$\frac{5}{13}$,θ∈($\frac{π}{6}$,$\frac{2π}{3}$),則cosθ的值為$\frac{5\sqrt{3}-12}{26}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知數(shù)列{an}的前n項和Sn=n2+2n-1(n∈N*),則a1=2;數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{2,n'=1}\\{2n+1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點P的極坐標為(2,$\frac{π}{2}$),曲線C的極坐標方程為ρcosθ-ρsinθ=1,曲線D的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).曲線C和曲線D相交于A,B兩點.
(1)求點P的直角坐標;
(2)求曲線C的直角坐標方程和曲線D的普通方程;
(3)求△PAB的面積S.

查看答案和解析>>

同步練習冊答案