分析 由已知條件利用裂項求和法求解.
解答 解:∵數(shù)列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…,$\frac{1}{(2n-1)(2n+1)}$,…的前n項和為Sn,
∴S1=$\frac{1}{1×3}$=$\frac{1}{2}(1-\frac{1}{3})$=$\frac{1}{3}$,
S2=$\frac{1}{1×3}+\frac{1}{3×5}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}-\frac{1}{5}$)=$\frac{2}{5}$,
S3=$\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}$=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7})$=$\frac{3}{7}$,
照此規(guī)律,Sn=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
故答案為:$\frac{n}{2n+1}$.
點評 本題考查數(shù)列的前n項和的求法,是中檔題,解題時要認真審題,注意裂項求和法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {2,3} | B. | {1,4,5} | C. | {1,4,5,6} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{14}{5}$ | C. | 7 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com