分析 根據(jù)直線OM與l垂直,得出asinB-b(sinB-sinA)=0①,
再由點(diǎn)M(b,a)在直線l上,得bsinB+a(sinB-sinA)+(a-c)sinC-asinB=0②,
由①②,結(jié)合正弦定理,求出$\frac{c}{a}$的值.
解答 解:根據(jù)題意,得;
直線OM的方程為y=$\frac{a}$x,
即ax-by=0;
又OM⊥l,
∴asinB-b(sinB-sinA)=0,
即asinB-bsinB+bsinA=0;
由正弦定理得asinB=bsinA,
∴2asinB=bsinB,
∴b=2a;
又點(diǎn)M(b,a)在直線l上,
∴bsinB+a(sinB-sinA)+(a-c)sinC-asinB=0,
即bsinB-asinA+asinC-csinC=0,
∴2asinB-asinA+asinC-csinC=0,
∴2bsinA-asinA+asinC-csinC=0,
∴4asinA-asinA+asinC-csinC=0,
∴3asinA+asinC-csinC=0;
由正弦定理得3a2+ac-c2=0,
即3+$\frac{c}{a}$-${(\frac{c}{a})}^{2}$=0,
∴${(\frac{c}{a})}^{2}$-$\frac{c}{a}$-3=0,
解得$\frac{c}{a}$=$\frac{1±\sqrt{13}}{2}$,
應(yīng)取$\frac{c}{a}$=$\frac{1+\sqrt{13}}{2}$.
故答案為:$\frac{1+\sqrt{13}}{2}$.
點(diǎn)評 本題考查了直線方程的應(yīng)用問題,也考查了正弦定理的靈活應(yīng)用問題,考查了計(jì)算能力與邏輯思維能力,是綜合性題目.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a=1 | B. | a=-1 | C. | a=2 | D. | a=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) | B. | [$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$](k∈Z) | ||
| C. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) | D. | [$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com