分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可.
解答 解:∵f(x)是定義在R上偶函數(shù),且在區(qū)間(-∞,0]上是單調(diào)遞減,
∴在區(qū)間(0,+∞)上為增函數(shù),
則不等式f(x2-3x)<f(4)等價(jià)為f(|x2-3x|)<f(4),
即|x2-3x|<4,
即$\left\{\begin{array}{l}{{x}^{2}-3x<4}\\{{x}^{2}-3x>-4}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}^{2}-3x-4<0}\\{{x}^{2}-3x+4>0}\end{array}\right.$,
解得-1<x<4,
故不等式的解集為{x|-1<x<4},
故答案為:{x|-1<x<4}.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {-1,0,1} | B. | {-3,-2,-1,0,1,2 } | C. | {-2,-1,0,1} | D. | {-2,-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{9}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{9}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | p或q為真,p且q為假,非p為真 | B. | p或q為假,p且q為假,非p為真 | ||
| C. | p或q為真,p且q為假,非p為假 | D. | p或q為假,p且q為真,非p為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,1) | B. | (0,1)∪(1,2) | C. | (1,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\overrightarrow{AO}$=$\overrightarrow{OD}$ | B. | $\overrightarrow{AO}$=2$\overrightarrow{OD}$ | C. | $\overrightarrow{AO}$=3$\overrightarrow{OD}$ | D. | $\overrightarrow{OD}$=2$\overrightarrow{AO}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com