分析 (1)要證PC⊥AF,因?yàn)镻C?面PCD,可證AF⊥面PCD,由已知底面ABCD是正方形,PA⊥平面ABCD,易得AF⊥CD,再由PA=AD,點(diǎn)F是棱PD的中點(diǎn)得到AF⊥PD,則問題得證;
(2)轉(zhuǎn)換底面,求三棱錐A-CEF的體積.
解答
(1)證明:∵PA⊥平面ABCD,CD?平面ABCD
又ABCD是矩形,∴CD⊥AD,
∵PA∩AD=A,∴CD⊥平面PAD.
∵AF?平面PAD,∴AF⊥CD.
∵PA=AD,點(diǎn)F是PD的中點(diǎn),∴AF⊥PD.
又CD∩PD=D,∴AF⊥平面PDC.
∵PC?平面PDC,∴PC⊥AF;
(2)解:連接BD,則BD⊥AC,
∵BD⊥PA,PA∩AC=A,
∴BD⊥平面PAC,
∴D到平面PAC的距離為$\frac{\sqrt{2}}{2}$,
∵點(diǎn)F是PD的中點(diǎn),
∴F到平面PAC的距離為$\frac{\sqrt{2}}{4}$.
∵點(diǎn)E在PC上,且PE=$\frac{1}{2}$EC,
∴S△EAC=$\frac{1}{2}×\sqrt{2}×\frac{2}{3}$=$\frac{\sqrt{2}}{3}$,
∴三棱錐A-CEF的體積V=VF-EAC=$\frac{1}{3}×\frac{\sqrt{2}}{3}×\frac{\sqrt{2}}{4}$=$\frac{1}{18}$.
點(diǎn)評 本題考查了由線面垂直得線線垂直,考查了三棱錐A-CEF的體積,綜合考查了學(xué)生的空間想象能力和思維能力,是中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2f(x) | B. | 2[f(x)+g(x)] | C. | 2g(x) | D. | 2f(x)•g(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\sqrt{3}+1$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | <k<2 | B. | k≥2 | C. | 2<k≤4 | D. | 2≤k≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com